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CHAPTER |
GENERAL BACKGROUND AND SCOPE

1.1 Introductory overview of the geodetic boundary value problems

When studying the geodetic boundary value problems it is necessary to consider
theoretical as well as numerical aspects and limitations. Historically, however, the
availability and nature of the measurements have been the driving forces for further
theoretical considerations and development. It is thus appropriate not to separate theory
and practice, but rather, study them as a whole in a particular solution of the geodetic
boundary value problem. The evolution of geodetic boundary value problems represents
the effort to reconcile theoretical and practical issues, either by making approximations, or
by varying the problem to one with fewer approximations, leading to a progression of
problems of increasing complexity.

The classical geodetic boundary value problem solution is the implementation of
fundamental potential theory concepts; namely Dirichlet's principle, which states that
there always exists a harmonic function (inside or outside a boundary surface) that takes
an arbitrarily prescribed set of values on the given boundary. Furthermore Stokes'
theorem proves the uniqueness of such a harmonic function for a particular set of
boundary values. The problem of determining a harmonic function outside a boundary
from its values at the boundary is called Dirichlet's problem, or first boundary value
problem of potential theory. Poisson's integral is an explicit solution of this problem for
a spherical boundary by means of spherical harmonics (Heiskanen and Moritz, 1967).

The third or mixed boundary value problem of potential theory is the determination
of the harmonic function assuming boundary values which are a linear combination of the
function and its derivative. Stokes' formula provides the solution to this problem in
physical 2 .iesy where the "fundamental equation of physical geodesy" is used as
boundar - - dition. It relates the gravity anomalies (Ag) and the disturbing potential (T)

1




at the ellipsoid, but its spherical approximation is used in Stokes' formulation by

neglecting the flattening of the ellipsoid, a sufficiently accurate approximation for many
applications. Still the boundary values must be given on the ellipsoid which
approximates the geoid. Since the gravity measurements are actually made at the
topographic surface of the earth, they must be appropriately reduced to the geoid. This
becomes a serious shortcoming of this solution due to the density assumptions required in
the various gravity reduction methods, together with the necessity of eliminating the
masses exterior to the ellipsoid, (Heiskanen and Moritz, 1967; Moritz, 1980).

In this manner the anomalous potential for a "regularized” earth is determined. The
determination of the geoid as a level surface inside the masses, that is, without a
regularization process, is made possible by using two known functions at the boundary
(Molodenskii et al., 1962). For example, Molodenskii's formula makes use of the
gravitational potential of the external masses and gravity anomalies similar to free-air
anomalies. Still, the mass distribution assumptions do not allow for a rigorous solution
and the determination of the geoid in this case involves in addition an inverse problem of
potential theory.

In order to avoid the inverse problem and inherent mass distribution assumptions,
Molodenskii reformulated the problem into a free boundary value problem; namely the
determination of the earth's physical surface and the external gravitational field using two
functions on the surface: the acceleration of gravity (g) and the geopotential (W)
(Molodenskii et al., 1962). The resulting non-linear integral equation is linearized and is
expanded in powers of a small parameter (k), taking the telluroid as a first approximation
of the unknown physical surface (ibid, pp. 120-123). The solution of the linearized
integral equation is obtained through an infinite system of integral equations which is
solved step by step by means of Stokes' function. The first equation gives a first
approximation which corresponds to Stokes' formula for the surface of the earth, while in
further approximations the topography is considered.




Thus, the ellipsoidal heights of the points on the surface are computed from the sum
of the height anomalies (£), determined from the disturbing potential on the surface, and
the normal heights (H), determined from the values of the geopotential on the surface.
The existence as well as the uniqueness of the solution were examined, and although the
existence can be guaranteed for exact and physically meaningful data, the uniqueness
cannot be guaranteed, given gravimetric daia alone (ibid.). Four additional parameters
must be determined by astronomical and geodetic measurements.

An alternative linearized solution to Molodenskii's problem was derived by Brovar
(Moritz, 1980) by introducing a different harmonic function in the expression of the
potential of a surface layer and thus arriving at a different and somewhat simpler integral
equation.

Molodenskii's problem, which is a third type free boundary value problem involving
an oblique derivative has been called the "modern" geodetic boundary value problem, in
contrast to Stokes' classical problem. Certain simplifications are still present in the
modern theory. The earth is considered rigid and uniformly rotating around a fixed axis
passing through the center of mass. Also, only the masses interior to the earth are
considered and tidal effects are neglected. Despite these simplifications the problem has
not been solved in general and recently there have been important theoretical advances of
considerable mathematical complexity. In view of the new developments, Molodenskii's
problem as outlined briefly above is referred to as "the classical modern geodetic
boundary value problem” (Sanso, 1984).

A non-linear solution for Molodenskii's problem was obtained by Hérmander using
Nash's iteration method to develop the inverse function theorem (Moritz, 1980).

Since most of the difficulty is due to the unknown boundary, the "gravity space”
approach developed by Sansd constitutes a significant contribution, by transforming the
free boundary to a fixed one. This is done by describing the problem in gravity
coordinates, that is using the three Cartesian components of actual gravity g = (8x{» 8xqp»

gx4) as the coordinates of the point where they are computed. Since g and W = W(g)




are known on the boundary, then the boundary is known in the new coordinate system.
The serious disadvantage of this approach is the limitation to a non-rotating earth, because
the centripetal acceleration does not allow for a one-to-one mapping between the ordinary
Euclidean space R3 (x) and the gravity space R3 (g). This problem is handled by
considering only the gravitational potential and a new function called the adjoint potential
is introduced. Detailed reviews of the recent theoretical developments have been given by
Sansd (1984) and Sacerdote and Sanso (1987).

A common point between the classical and the modem theory is the requirement of
continuous gravimetric data coverage, although such situation is far from being realized.
On the other hand large amounts of altimetric data have been available since the last
decade. This prompted the formulation and study of new geodetic boundary value
problems of great practical importance, the so-called altimetry-gravimetry problems.

A most distinguishing new element of the altimetry-gravimetry problems is the
partitioning of the boundary in two parts where different boundary conditions hold. Two
types of altimetry-gravimetry problems have been proposed. The first one, presented by
Sansd (1984), is a boundary value problem for the Laplace equation with a Dirichlet
condition over the sea surface (Sq: fixed) and the geopotential and gravity vector given
over the land surface (Sp: free). The second one, presented by Holota (1980), is a
boundary value problem for the Laplace equation with a Neumann condition over the sea
surface (Sg: fixed) and the geopotential and gravity vector given over the land (Sy: free).
Only the linearized versions of these problems have been studied following
Molodenskii's classical treatment, except from adopting a different telluroid definition to
fit the known Ss. The relevant existence and uniqueness theorems have been studied
under a spherical boundary approximation (Sansd, 1983).

While the above outlined problems have practical applications, it is currently the
case, and even more so the future situation, that different types of data exist in
overlapping parts of the boundary. The corresponding boundary value problems are
called overdetermined. A fundamental distinction from the altimetry-gravimetry
problems, where the different observables cover disjoint parts of the boundary surface, is
that the redundant observations must be attached a meaning of statistical nature.




Obviously, if the observations were exact there would be no reason for retaining
overlapping ones. Hence, the solution of overdetermined boundary value problems must
implement procedures capable of handling erroneous data in contrast to the deterministic
solutions of the classical and Molodenskii's problems. A stochastic approach to the
altimetry-gravimetry problem has been proposed by Bjerhammar (1983) utilizing the
Gauss-Markov model and the MINQUE method to estimate variance components, and
from them, the weight matrix to be used.

To conclude this conceptual overview, the principle of Integrated Geodesy is
mentioned as the "philosophy” to use all available geodetic (and other pertinent)
observations in a unified procedure for three-dimensional or four-dimensional geodesy
(Hein, 1986). In support of the attainability of integrated data processing is the
tremendous advance in the technology of the supercomputers for handling large amounts
of data and for achieving high speed computations.

1.2 Theory of the overdetermined geodetic boundary value problems and
existing solutions

It is a decisive characteristic of the overdetermined boundary value problem theory
that the estimation and not the determination of the gravity field is sought. A rigorous
mathematical framework has been laid by Sacerdote and Sansd (1985) for the solution of
overdetermined boundary value problems in general, together with the particular
formulation of geodetically meaningful cases, namely the overdetermined altimetry-
gravimetry and the gravimetry-gradiometry problems. The essential ideas of this work
are presented briefly in the following, starting from the definition of the problem.

For the unknown function T, the following conditions must be fulfilled

(1.2-1)




where Q is the domain where the Laplacian (V2) holds and 9 its boundary; that is, a
closed surface where the boundary conditions (1) and (2) are given. By and B are

assumed to be linear operators, and f) and f; the boundary data which are functions
defined on 0X.

If the problem defined by the Laplacian and boundary condition (1) only is
considered and assumed to have a unique solution then the function T is completely
determined and so is f;. However, this is not the case in reality since f; and fy are
imperfect measurements and therefore the problem as defined has no solution. A problem
stated as such is called overdetermined and a solution can be obtained under a chosen
error minimization principle. In this sense a best linear estimate:? = (? 1» ?2) is found
from the data: fO = (f;(®), £,(0)) by means of the linear operator &, so that the functions
?1 and ?2 are consistent, and a unique solution of (1.2-1) is obtained from:

t=B*% (1.2-2)

where B = (By, B2) and t =20

Following these ideas one may view the solution to the overdetermined boundary
value problem as the infinite dimensional generalization of the least-squares estimation of
parameters from redundant data.

Let yo be a set of measurements of a random variable with covariance matrix C and x
be the parameters in the linear model y=Bx. Then an unbiased estimate § is obtained
using the least-squares principle:

@ - yo)T C1 () -y) = min (y - yo)T C- (y - yo), (1.2-3)
y=Bx
where
§ = BR=B(BTC-1B)'! BT C-1 y. (1.2-4)

*




The equivalent minimum principle for the linear model (1.2-2) is the infinite dimensional
generalization of the principle (1.2-3), where the vectors y and yq are replaced by the
functions f and f(0) and the covariance matrix C becomes an operator C. Then the
variational principle may be expressed in general as:

< (56, (B4 < min <c {6, (6% (1.2-5)

=BT

The operator C is symmetric and invertible, defined from:

2
(CVh(an=faQZCa,-(Xh XviXgdox, , i=1,2
j=1

(1.2-6)
where the kemel function Cj;j is the covariance function:
Cij{X1, Xg)=E {[fi X - (X ] [£5 X2 - £ (xﬂ]} _- (1.2-7)
Finally, the equation corresponding to equation (1.2-4) is given as:
t =B (B+C'1 Byl B+ C-1 10, (1.2-8)

where B* is the adjoint of B. However this formula is not accepted since the operator C-!
cannot, in general, be proved to be bounded. It is only proved adequate in a simple case
where the boundary dQ2 is a sphere and the Dirichlet and Neumann boundary conditions
are given for the data f; and f2 which, in this case, can be expressed in spherical
harmonic series.

In order to obtain an acceptable estimator in all cases Sacerdote and Sansd (ibid.)
proceed by employing another minimizing principle. The mean square error principle,
which is proved equivalent to least-squares, is written as:
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Ty -
E{”y-y“ }=min E{ly I} (1.2-9)
y=Bx
where y = E{y}. Imposing the condition of obtaining an unbiased linear estimator the
above principle becomes:
~ -2 .
E{”y-yn }=trLTBTQ 'BLC (1.2-10)

where L is the unknown matrix introduced in the unbiasedness condition BLB = B, and
Qlis any positive definite matrix used in the norm definition in R™:

lylF=y'Q'y (1.2-11)

The estimator finally obtained from the minimization of (1.2-10) is independent of the
choice of the norm, i.e. the matrix Q1.

The above formulation is generalized to the infinite dimensional case, where the
result corresponding to (1.2-10) is:

E {“BL (£)- ?)Hz} -3 <'B’QBLCe, ¢>
n=1

=trL'B*Q"'BLC, (1.2-12)
where (e} is an orthonormal basis in the Hilbert space where the norm is defined.

The convergence of the series in equation (1.2-12) is required and can be secured by
choosing an appropriate covariance operator C. In order to assure a solution, the
minimizing principle is regularized and further modified to lead to linear equations.
However the unbiasedness condition must be released and the new minimizing principle
is:

At + _1 ~ ~*t + _1 ~
trL B Q BLC+arL B Q BlLQ=




min{trL*B*Q'BLC +ar L*B*Q ' BLQ
(1.2-13)

where @ is the scalar regularization parameter. The estimator derived by utilizing
equation (1.2-13) is biased, but it is proved that a sequence of biased estimates converges
to the unbiased one:

-1
o + -1 + -1 Jo!
t-(8"D)B) B*D'd 1214
where Dg = C + aQ is proved in general to be a bounded operator, except when a—0.
Comparing to equation (1.2-8) the above result may be viewed as a regularized least-
squares estimator, since the presence of the term aQ in the definition of the covariance

operator is the only difference. For the actual computation of the estimate lf‘ it is
suggested that a basis {ng} is introduced so that:

T= z Tknk.
k=1 (1.2-15)

Obviously the resulting system of an infinite number of equations, involving the sum of
an infinite series, is solved by truncating the series at Nmax and considering only as many
equations. In conclusion, the computational procedure is further illustrated in the
overdetermined altimetry-gravimetry problem:

r -
Ag {land
BT=| Tjsea

og
| sea ] (1.2-16)
where the solid spherical harmonics are used as basis functions in the T parameterization.
Heavy computation burden is required for the formation of the system and also the
solution of the system depending on the choice of the Npax.
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Because of the extensive computational requirements of the global solution, Sanso
(1986) favors a local solution, based on regionally defined functions. A basis of finite
element shape functions, for instance, would lead to a patterned normal matrix which
could be exploited with sufficient gain to make the solution plausible.

Other than the computational difficulties there still remains a drawback in the solution
described above: the dependence of the solution on an arbitrary regularization parameter.
To avoid this Sansd (1988) proposed another approach, which utilizes a suitable
generalization of Wiener's process and Wiener's integral over a manifold. On this basis,
the white noise process is defined on the boundary, together with its relation 1o the
measurement noise. Then, by defining the solution of Laplace's equation given white
noise as boundary values, a stochastic solution of a boundary value problem is reached
and the minimum mean square error principle is imposed to handle the overdetermination.
The stochastic model adopted in this development allows for a constant and independent
white noise in each boundary condition. As a next step a constant correlation is admitted
between different measurements referring to the same location. Further generalizations
need to be made by considering variable variances and correlations.

Despite the theoretical limitations that Sansd has proved for a least-squares
adjustment solution to the overdetermined boundary value problems, actual computations
have shown a rather successful practical result. In particular, high degree global
geopotential models (GPM1 and GPM2) were derived by Wenzel (1985), who adjusted
together mean gravity anomalies, mean altimetric geoid heights and satellite derived
geopotential models. This procedure involves the solution of a large system of equations
(of about 40,000 unknowns) and a large number of observations (about 100,000). In
return, different types of observations can be included, without transforming from one
type to another, while the observation equations can be as exact as possible. Also, the
accuracy of the adjusted parameters is estimated and the residuals serve as good indicators
of the measurement errors. Due to the large number of observations the weight matrix
(P) is assumed to be diagonal and the elements of the normal matrix (N) are computed by
means of analytical expressions, since matrix operations cannot be afforded.
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Considering the estimation of the spherical harmonic coefficients of a geopotential
model to degree and order 200, the normal matrix to be dealt with has 8 x 108 elements in
symmetric storage. However, it is a diagonally dominant matrix with small off-diagonal
elements. In an attempt to bring matrix N to a banded form, the normal equations are
scaled:

N’ = SNS (1.2-17)

so that all diagonal elements of N’ are set to 1. Then the matrix S is a diagonal matrix
such that:

1

¥INi] | (1.2-18)

(i) =

All off-diagonal elements [Nj;] < €, where € is a chosen limit size, are ignored and only
the ones [Njj] 2 € are taken into account. Since the exact location of the very small
[Nij}'s depends on the data coverage and the weight distribution, it cannot be predicted &
priori. Thus, to obtain a minimum bandwidth of the matrix an appropriate ordering of the
unknowns is necessary. As a last step an iterative solution is employed by using the
banded part of the normal matrix

N‘=B+R (1.2-19)

where B is the banded part and R the remaining part of N’. Then the iteration procedure
is given by the following equations:

li=L - AXj.i (1.2-20)
Xi=Xi.1 +B1(ATPI).

Convergence is expected and reached when:

Xi-Xi.1=B1(ATPI;) - 0. (1.2-21)
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For the computation of GPM1 and GPM2 models, Wenzel (ibid) used only the diagonal
terms of the normal matrix in B. Specifically, for the derivation of GPM2 complete to
degree 200, 55,454 observations of mean gravity anomalies, 62,003 observations of
mean altimetric geoid heights and 570 potential coefficients of the GEM L2 model were
used, a total of 118,027 observations and 40,401 unknowns.

The problems that are associated with this approach are addressed by Wenzel (ibid),
and they are mainly the two following: a) the spectral resolution of the data (especially
mean values) and b) the data gaps, which generate strong, short periodic variations in the
estimated model, unless a suitable stabilization is used. From the experience of the
GPM1 and GPM2 computations, particular problem areas are reported, which should be
handled to avoid unstable iterations in the adjustment: systematic differences among
various data sets should be known a priori and any existing data blunders should not be
included.

In addition to these two models, there exist a group of high degree geopotential
models which are widely used and can be considered solutions to the overdetermined
problem, although they do not follow the typical definition presented here. On the other
hand, these models are the result of the combination of all available data, and, in that
sense, represent a non-rigorous but practically accessible solution. Among them there
has been continuing refinement in the procedure as well as the input data sets used. For
example, the RAPP81 field, computed by Rapp (1981) to degree and order 180 is based
on three data sources: a 1° x 1° mean gravity anomaly data set derived from Seasat
altimetric data, combined with a 1° x 1° updated terresirial data set, yielding one set of
56,761 values; also an 2 priori satellite derived potential coefficient set (GEM 9) complete
to degree 20 with additional terms up to (30, 28). The combined anomaly set reached
complete global coverage by filling in the missing data with values computed from the 2
priori coefficient set. Overlapping boundary values in the two gravity anomaly sets were
empirically merged to choose the most accurate values and eliminate inconsistencies.
Then, the & priori coefficients and the global gravity anomaly data set were used together
in a least-squares adjustment, and the potental coefficients (other than the adjusted ones)
were computed from the adjusted data through an optimum quadrature procedure. The
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accuracy of the coefficients was esumated by error propagation considering measurement
and sampling error.

As the databases improved with time, more rigorous procedures were employed to
estimate even more detailed fields. Rapp and Cruz (1986a) discuss the computation of
two potential coefficient sets, OSU86C and OSUS86D, the only difference between them
being that 5,547 geophysically predicted gravity anomalies were included in the
derivation of the latter. The procedure followed was essentially similar to the one
described above: a low degree satellite derived set of coefficients was combined with a
global set of 1° x 1° mean gravity anomalies in a least-squares adjustrnent. A special
version of GEML2 was used together with six additional coefficient pairs, after an
ellipsoidal correction was applied. The anomaly data set was developed from the merging
of the June 1986 terrestrial set, after applying downward continuation, and the Geos
3/Seasat altimeter data using empirical criteria. The adjusted data were then used in a
least-squares collocation solution to compute the remaining potential coefficients complete
to degree 250, together with the associated accuracy estimates. Since test runs of
replacing the collocation estimation with the integration formula procedure showed good
agreement, the latter procedure was used in deriving the next two fields, OSUS6E and
OSUB86F (Rapp and Cruz, 1986 b). The adjusted potential coefficients of the previous
fields were adopted. For the computation of the remaining ones to degree and order 360,
a 30" x 30" gravity anomaly data set of 149,670 values was used in an optimum
quadrature procedure. Accuracy estimates could not be easily obtained in this
methodology and it is suggested to follow the values computed in OSU86C/D models up
to degree 175 and assign 100% uncertainty for higher degree coefficients.

Comparison of these potential coefficient sets with GPM1 and GPM2 and other
existing global models with regard to their theoretical basis, problems and advantages is
given by Rapp (1986). Further comparative analysis concerning applications as well as
the usefulness and future needs of high degree models is presented by Rapp (1987).
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1.3 Perspective and general methodology of a collocation approach

A solution to the overdetermined geodetic boundary value problem, as defined in the »
previous section, is the objective of this stuay. Considering the established theory, the
achieved practical solutions and the data situation, a collocation approach is implemented
in a simulation analysis.

This attempt is primarily intended to provide the methodology for the computation of
a global gravity field model. The 2 priori goals were the development of a procedure as
general as possible to handle all possible types of existing information and data types,
rigorous with regard to the solution of the system and one-step, i.e. avoiding data pre-
processing and transformation to other types. Finally and most importantly, the
computational feasibility of such a procedure is sought.

In general, an operational approach is followed here, as opposed to a model
approach, eg. the classical boundary value problem solution (Moritz, 1980, p. 221). In
essence, operational is considered the approach of solving a problem by finding the best
possible solution in the presence of all relevant information, instead of deriving a model
and acquiring the appropriate data to obtain its parameters.

A widely familiar method from "operational geodesy" and "integrated geodesy”, the
least-squares collocation, is implemented here. Although collocation is mostly viewed
with a statistical interpretation, it possesses the analytical structure of approximation
methods. The particular properties of the gravity field enter in a basic covariance function
from which all other necessary covariance functions are derived via propagation.

The choice of the method of collocation is advantageous for the following reasons: .
a) it provides the best linear unbiased estimate of the predicted signal (and parameters
when applicable) b) heterogeneous and noisy data can be handled and heterogeneous .
signals can be predicted provided all the necessary covariance functions are known, ¢) in
cases of data gaps the prediction reflects the corresponding covariance functions, d)
provides accuracy measures of the estimated quantities.

M
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The most important disadvantage of the method is the required computational effort,
which makes it impossible to use in many cases. This is because the inverse of the
covariance matrix of the observed quantities or the solution of the equivalent system of
equations must be computed, the former being more time consuming than the latter.

Despite the large amounts of data involved in the problem at hand, the
implementation of collocation is undertaken in this work in light of the following: a) the
block-Toeplitz structure of the covariance matrix of the observations under certain
covariance function assumptions, which is exploited in generating and inverting the
matrix, b) the sequential algorithm of incorporating additional data groups based on a
partitioned inversion, and c) the recent advances in the supercomputer technology and
already achieved substantial improvement over the CRAY X-MP/48 which was used in
this work.




CHAPTER 1I

FORMULATION OF A COLLOCATION SOLUTION OF THE OVERDETERMINED
BOUNDARY VALUE PROBLEM

2.1 Fundamental principles of collocation

The method of collocation was introduced in geodesy through Moritz' work of
gravity anomaly interpolation. Furthermore, Bjerhammar presented the idea of
approximating the potential at the points where gravity anomalies are measured, using
collocation and a set of potentials that are regular down to a sphere imbedded within the
earth. It was the valuable work of Krarup (1969) which provided the foundation for the
application of the general collocation model in physical geodesy. His studies originated
from the instability suspected in Molodenskii's boundary value problem. Also, the reality
of finite measurements gave the motivaton to look at the determination of the gravity field
as a problem of interpolation, or approximation. Along these lines it is natural to
formulate the boundary value problem as an adjustment problem, where an improvement
of the boundary value, made minimum in some least-squares sense, would provide a
unique solution. Krarup generalized Moritz' interpolation formulation to find directly the
potential, instead of using the predicted gravity anomalies in Stokes' formula. In
addition, his generalization included other types of measurements, including satellite-
related and deflections of the vertical, as well as a treatment of data error, in what he
called a smoothing procedure.

Collocation, in applied mathematics, is called the determination of a function by
fitting an analytical approximation to a set of given linear functionals (Moritz, 1980, p.
85). This definition is consistent with two aspects of collocation: the prediction aspect
where discrete values of the function are predicted, and the one of finding the
interpolating continuous function as an entity. In other words, there is a finite and an
infinite dimensional aspect of collocation (Krarup, 1969, p. 29). which are both
applicable in physical geodesy. The first one when a certain number of values of linear
functionals of the gravity field are predicted at discrete points, and the second one when

16
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the gravity potential is determined as a function in space.

Consider a function T in a Hilbert space H, and the given linear functionals Ly of T,
Ly T=Ik , k=12 .,q 2.1-1)
where Iy € R4. By defining the linear operator B = [Ly], the above equation becomes:
BT =1 .1-2)

with the transformation B: H - R4,

Assuming that a reproducing kernel function K (P, Q) exists in H, then it is unique
and satisfies two fundamental properties:

K(®P, Q) € H forQ fixed, (2.1-3)
f(Q =<f (P), K (P, Q)>pforall fe H. (2.1-4)

From the above it follows that the kernel function is symmetric and positive definite,
which is expressed by the following relations:

nn
Y xix K [P, PJ>0,
1=0k=0

(2.1-6)

for all sets of n points P; and n corresponding numbers x; # 0, wherei=1, 2, ..., n for
all natural numbers n.

The kernel function may be expressed in terms of the basis functions @; (P), which
form a complete orthonormal base in H:

]
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KP.Q=2 ¢,[P ¢;Q
i=1 (2.1-7)
It also holds that:
_.Q
9,(P)=L;"KP. Q) (2.1-8)
and since T € H, it can be approximated by:
~ n
T(P)= 3 b; ¢;(P)
i=1 (2.1-9)

where b are unknown coefficients, which are determined by substituting (2.1-9) 1nto
(2.1-1):

~ ”~ n P
LeT=L.TPd= 2 biLi LK Py Q)= Li
i=1

2.1-10)

Following the notation introduced in (2.1-2), the base functions are written as:

[‘Pi]=BK’ (2.1-11)
and the equations (2.1-9) and (2.1-10) are written as:

~ T

T=(BK) b  and (2.1-12)

T
B(BK) b=1. (2.1-13)

Solving (2.1-13) for b and substituting into (2.1-12) the function T is determined from:
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~ T -1
T=(8K) [BBK] 1. (2.1-14)

It can be proved that the solution given from (2.1-14) minimizes the norm of T (i.e.
”'?‘ lH2<llTl |2) in the Hilbert space H. In particular this norm has the value
(Moritz, 1980, p. 214):

7 =<1, 3>= 2 T ne, 120k ..
v (2.1-15)

The above equation may be expressed in the notation of equations (2.1-11) to (2.1-14) as:
~11? T T
”T” =b B(BK) b, (2.1-16)

and after substituting b from (2.1-13) the norm is given as function of the data:

||¥|I2=1T (BKBT 1. (2.1-17)

It is seen that the determination of the function T depends on the choice of the norm in
Hilbert space H, and subsequently the kernel function K (P, Q). The particular choice of
the reproducing kernel defines the metric in the Hilbert space, which allows for a
geometric interpretation of collocation.

The geometry of collocation seen as a least-squares adjustment problem is shown by
(Krarup, 1967, pp. 34-38), in connection with the classical least-squares adjustment.
Two finite or infinite dimensional spaces are considered H; and H;. Given a bounded
operator A: H; — Hj and an element a € Hj, find x € Hj: [zl |2 = minimum, where:

z=Ax-0. (2.1-18)
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If the operator ATA is invertible, the unique solution of this problem is the commonly
used least-squares adjustment (observation equations) formula:

x=(ATA)1AT . (2.1-19)
Given a bounded operator B: Hy — H; and an element b € Hj, find x € Hj:

Bx=b (2.1-20)
and || x | |2 = minimum. The solution in this case is a least-squares collocation solution:

x =BT (BBT)-1b. (2.1-21)

The geometry of other least-squares adjustment problems, a generalized adjustment model
and the collocation model is illustrated by Dermanis (1976). Most importantly, the
duality in interpretation of these models is elaborated and the relation between the least-
squares adjustment and collocation is shown.

In the derivations presented to this point, the definition of the metric in Hilbert space
1s arbitrary, so that there is an infinite number of functions "i‘ determined from equation
(2.1-14) which fit the given data 1, depending on the choice of the kemnel function K (P,
Q). In order to obtain a unique and meaningful solution, a statistica! interpretation is
attached to the function K (P, Q): it is identified with the covariance function of T. This
is possible since both functions share the properties of symmetry and positive
definiteness. Also, all the other relevant covariance functions are derived using the
propagation law of the kernel (or covariance propagation law) and the appropriate linear
operators. Thus, equations (2.1-14) and (2.1-17) are written as:

- -1
T=C'n C" 1 and (21_22)

T ]
”T” =1TCIIl 1, (2.1_23)
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where
Cj=cov (1,l)and (2.1-24)
Cn=cov(T,)). (2.1-25)

Under the statistical interpretation this solution can be derived by minimizing the variance
of the predicted quantities i.e.:

o, =E {ei} =E {(?k - Tk)z} = minimum,

(2.1-26)
which corresponds to the minimum error norm approximation:
~ 2
“T - T“ = minimum. (2.1-27)
An additional equation in this case is the covariance of the predicted quantities:
-1 AT
Ct:s: C-n" C-n C" C-n . (2.1'28)

The least-squares collocation prediction method maintains the same analytical structure
and properties with the analytical collocation, while providing the best linear estimates, in
the sense of minimum variance of the predicted signal.

An extensive treatment of the least-squares collocation model, from the stochastic
view point is given by Moritz (1980). For the sake of completeness the general least-
squares collocation model with parameters is briefly described here in matrix notation and
compared to the observation equation model of least-squares adjustment.

Consider the linear model:

1=AX +BT+n=AX+t +n, (2.1-29)
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where the data |1 are represented by a systematic part AX, a random signal part BT, and
random noise n. This model reduces to least-squares prediction with noise for A=0; for
B=0, it reduces to ordinary least-squares adjustment. The estimation includes the non-
random parameters X and the random parameters s = [t : u]T. The minimum principle
satisfied is:

sTC;is + nTc;,lnn = minimum, (2.1-30)
and the final estimates are given from:
x=(aTe'a) ATE 2.1-31)

PN . | ~
s=C,C (1-AX) (2.1-32)

where C = Cit + Can. In contrast, the minimum principle involved in least-squares
adjustment is:

T -1 -
n C,,n=minimum, (2.1-33)

where n is the only random quantity. In the case of prediction and filtering (or
smoothing), equation (2.1-32) becomes:

~ -1
5=Cst{Cn+ CHYJ I. (2.1_34)

The above estimates are optimal in the minimum variance sense, provided the covariances
involved are known. When Cpn=0, equation (2.1-34) reduces to equation § = Cq C[: 1,
known as Wiener-Kolmogorov formula (ibid., p. 211).
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Other than the derivations outlined above, these formulae can be obtained in a
deterministic way, by adopting quadratic norms and solving the corresponding variationa)
problems.

2.2 Estimation of spherical harmonic coefficients for the disturbing
potential.

The aim of this work being to find the function of the anomalous gravity potendal T
of the earth, a set of basis functions is needed so T can be expressed as their linear
combination. Then the unknown coefficients are to be calculated as shown in equations
(2.1-9) and (2.1-10). The foundation study of Krarup (1969) has discussed the
usefulness of spherical harmonics as such a base from the practical point of view, beyond
the fact that they represent a solution to Laplace's equation. These concepts will be
briefly exposed in the following.

Let ¥ be the space outside a sphere with radius R and surface 6 (¢ ¢ X) and sets of
potentials ¢ which are regular in ¥ and at infinity so that:

limo (P)=0. (2.2-1)
P— oo

A set S of these potentials which are continuous in Y and ¢ have continuous
boundary values on the surface o of the sphere. It is proved that if the boundary values
are known, then @ can be found by means of Poisson's integral and that Poisson's kernel
can be expressed in spherical harmonics. From that, a symmetric kernel function K (P,
Q) can be defined as:

- 2 n+1
KP,Q= Z(Zn + l)(-B——) Pn(cos \v).
n=0 TpTQ
(2.2-2)
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It is shown (ibid. p. 44) that K (P, Q) is the reproducing kernel for a Hilbert space H,
which can be proved to consist of potentials regular in 3. with square integrable

boundary values on the sphere. After defining the functions {(p?,‘ (P)} by:

o (P)= (%)Minm (Qp A p) m20

R

n+l
(F};) §nm(QP’ }'P)’ m<0

(2.2-3)
where Rym and §nm are fully normalized surface spherical harmonics, then (2.2-2) is
written:

KP.9=Y 3 o Po, Q.
n=0m=n (2.2-4)

which means that the spherical harmonics ((pr:} form a complete orthonormal system for
the Hilbert space H. Then for every potential ¢ € H a series expansion may be written:

— & m m
o(P)= 2 Z a, ¢, (P), forPel.
n=0ms=n (2.2-5)

There exists a sphere of radius R}, for which the above series converges uniformly on the
surface and outside of any concentric sphere R, such that R>R;. Additionally, there are
regions of convergence within the limit sphere Rj. In this sense the series provides an
analytical continuation of the exterior potential within the body. The potential of a
homogeneous sphere for example, can be analytically continued into the whole space
except the center. In the current application it is of interest to know whether the limit
sphere for the disturbing potential would be located below the earth's surface. It can be
proved that even if that were true, the addition of some mass at a location above the
surface will result in a potential with singularity at this particular location. Thus, it is not
practically meaningful to speak of convergence of the series near the surface, since it is a
very unstable condition. As it is stated in the literature (ibid. p. 51, Moritz, 1980, p. 64):
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“if the series were convergent at the surface of the earth, a displacement of a single grain
of sand would spoil the convergence". The remedy to this problem is supplied by
Runge's theorem, which states (Krarup, 1969, p. 54): "Given any potential regular
outside the surface of the earth and any sphere in the interior of the earth. For every
closed surface surrounding the earth, there exists a sequence of potentials regular in the
whole space outside the given sphere and uniformly converging to the given potential on
and outside the given surface”. Hence, the potential can be approximated arbitrarily well
by polynomials of spherical harmonics down to the surface of a sphere interior to the
earth.

In order to proceed with finding the spherical harmonic coefficients of the
approximation of the disturbing potential using collocation, a choice of the reproducing
kemnel function K (P, Q) is necessary to obtain a unique solution. This is accomplished
by introducing a stochastic interpretation of the kernel as the covariance function of T.
This is, however, faced with both conceptual and practical problems.

First, the covariance function cannot be found from formal stochastic theory directly,
since this would require a population of earths and the corresponding number of
realizations of T measured at all points. Considering T as a stochastic process on the
sphere, an empirical covariance function may be computed from only one realization of
the process by replacing the expectation operator E (i.e. phase average) by a suitable
space average M, and assuming that the process is an ergodic process on the sphere
(Moritz, 1980, p. 285).

A second problem is that T is not directly measured. This is handled with the
propagation law of covariances which allows for the covariance K (P, Q) to be computed
from the covariances of its functionals (e.g. C (P, Q) of gravity anomalies).

Despite these problems, a positive consideration is that certain properties of K (P, Q)
are known, namely its symmetry, positive definiteness and harmonicity, as discussed in
Section 2.1.
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Finally, another assumption is made considering T to be a rotation invariant
stochastic process. This results in a covariance function which depends on the spherical
distance y between the points P and Q. Such a function is called homogeneous (origin
independent) and isotropic (azimuth independent) (ibid. p. 283). Since the earth is not a
sphere, such assumption may be questionable. It is nevertheless considered a feasible
approximation of the statistical model (Krarup, 1969, p. 22).

In the following the formulae for the least-squares collocation prediction of the
spherical harmonic coefficients are presented. The procedure is essentially the one
outlined by Moritz (1980, sec. 21). Certain other equations are derived by Sjoberg
(1978).

By eliminating the systematic part from equation (2.1-29) the measurements are
modelled as:

I=t+n, (2.2-6)
where 1 are the measurements, consisting, for this study, of gravity anomaly (Ag) and
undulation (N) data. The signal part of 1is t and n is the measurement noise. Since the

disturbing potential function T € H is expanded into an infinite series, the spherical

harmonic coefficients comprise an infinite dimensional vector,
s=[sys2s3...]T, (2.2-7)

of the Hilbert space 2. The equivalence between T and s defines an isomorphism
(Moritz, 1980, p. 213) between the corresponding spaces:

T—os: H-Iy, (2.2-8)

which is also shown to be isometric:

2
Tl =1si (2.2-9)
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Thus, equation (2.2-6) is written:
1=Bs +n, (2.2-10)

where the operator B is expressed as a q x o matrix (where q is the dimension of the

vector 1). The kernel K is a symmetric infinite matrix, and the formulae of the finite
dimensional case may be applied:

- -1
s=Cg(Cpy+ Cpy 1.

(2.2-11)
under the condition:
sT K-1s + nT D-! n = minimum (2.2-12)
where:
Ci=covi(s,t)= KBT
C=cov i, )= BKBT
Can=covin,nj=D
C,,=covl(s,s)]=K
> . (2.2-13)
The accuracy estimate of the predicted signal is given by:
Egs = Css - Cgt (Cyp + Cn)! CyT . (2.2-14)

Next, the formulae for the computation of the covariances in (2.2-13) are given, starting
from the basic covariance function K (P, Q). A detailed derivation is given by Rapp
(1988).

K (P, Q =M (T P) TQ) =K (ypQ)
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1 2x 4 2r
L f f f T(0.1) T (67,1") sin 8d8dAda
NZ = a=0

(2.2-15)
where
cos \ = cos 0 cos 8" + sin 8 sin 8’ cos (A"-1) (2.2-16)
=
T(8,1)= % Y Y [Enmcos mA + S, sin m)»] P, (cose).
n=2m=0 (2.2-17)

In the above expression Cpm and Spm are the conventional fully normalized spherical
harmonic coefficients of the disturbing potential, where R is the associated scaling
parameter. Also Ppm are the fully normalized associated Legendre functions.

After performing the integradon in equation (2.2-15) (Heiskanen and Moritz, 1967, pp.
257-258) and considering no zero and first degree harmonics:

K(P, Q=Y k,P,(cos y)
n=2 (2.2-18)

where kj are the potential degree variances given by

o= (2 2 (Com# S

(2.2-19)

(-Inm and §nm are fully normalized spherical harmonic coefficients. The extension of
K(P,Q) in three dimensions is done through:

2

n+l
- R
K(P,Q)=2k,,(r : ) P, (cos vl
n=2 PQ

(2.2-20)
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Now, the potential is expressed in terms of Laplace surface harmonics Ty, (6, A):
o0 R n+1
Tei= 37 Taloa)
n=21P (2.2-21)

and the radial component of the gravity anomaly at a point is also expressed in terms of
Tn (8, ) as:

1 oo R n+l
aglP)== Y ln-l)(;—-) T.(6.1).
P n=2 P (2.2-22)

Proceeding with the same argument as the one used for the derivation of K (P, Q), the
covariance function for the gravity anomalies is obtained:

- 2 n+2
R
cov (Agp, AgJ= CPP,Q= ZCn(;—r—) Pn(cos \y),
=2 VP (2.2-23)
where c,, are the gravity anomaly degree variances given by (Rapp, 1988, p.18)

2 Lo N

‘= (_R_) kn- (2.2-24)

By substituting equation (2.2-19) in the above and making a spherical approximation for
¥ evaluated at a sphere of radius R, (i.e. Y= kM/R2) the above equation becomes:

2 2.0 (2 2
Ch=Y (n—l) Z(Cnm+sn
m=0 (2.2-25)

Note that the anomaly degree variances evaluated from the above equation refer to a
sphere of radius R (Rapp, 1988, eq. (101)). If used for the computation of covariance
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between data points on the surface of a sphere with radius R, the equation (2.2-23) is
usually written as:

C (\v)= Z Cn s"’\zl’n (cos w),
n=2 (2.2-26)

where

)

The same result for C (y) is reached by using the covariance propagation formula, as is
illustrated in the derivation of the covariance function between the anomaly and
undulation signals. In general it holds:

P
cov(agp Ng =L L2K (P.Q). (2.2:27)

Since, without loss of generality the radial component of the gravity anomaly can be
expressed in a spherical approximation as:

Ag =-§—T-

Poar

__Z_Tp
P Tp

the operator L; is defined as

J 2
P_[.9 _~°
Li-[ or r]’
P (2.2-28)

and from Nq = Tg/y, the other operator involved is

Y lQ (2.2-29)
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By applying the above operators to K(P, Q), using a constant ¥, and further manipulation:

1

cov(AgP, NQ)=; 2

JK (P,Q)
™ K(P,Q

ar

P

Tpn=2 (2.2-30)

For computations of covariance between points on the sphere of radius Rg, the above
formula yields:

IPRELE R A
coviAgp ——Y;l— 1S n\COs Y.

En=2 (2.2-31)

Similarly, the autocovariance function for the undulation measurements is obtained as:

n+l
1 «, [ R?
cov(Np, Nd:——Z-an( ) Pn(cosw),
n=2 Tp rQ
Y (2.2-32)

and for computations on the sphere Rg:

R2 « € n+l
cov(Np, N()‘"““‘Z n_s"'p_(cos ).
2 n=2 (n-l)z
v (2.2-33)

When including data which are area means of point data values the need for mean
covariance functions arises. For a less time-consuming computation of such covariances
for signals on the sphere, the equations (2.2-26), (2.2-31) and (2.2-33) are modified by
introducing a smoothing operator, called the Pellinen operator (Sjoberg, 1978) Bn. The
corresponding equations are:




~ = PQ .,
CP.Q= Y 8,B,c,s"?Pylcos y),
n=2 (2.2-34)

- Q o
cov (A (—gp, NQ)- -— Z B ﬂ c,, P, (cos ),
YREg n=2 (2.2-35)

cov [N Ng= R ZB B —s 5™ P, cos w),

v (n 1) (2.2-36)

where,

1 1
B,= w—— [Pn—l (cos wg) - oy (cos ‘l’o)]’

and o is the equivalent spherical cap radius for the block. When equal area means are
used, as given by Sjoberg (1978), the value of yq is constant, and for blocks at the
equator is given from the equation:

172
sin (32’2) =

esme) o—an

4r

(2.2-37)

P
and in equations (2.2-34 to 36) it holds B, = BS. For area means referring to an
equiangular grid the value of yq is computed as shown by Katsambalos (1979),

e (sin @y — sin cps)

cosy,=1-
In (2.2-38)

For efficient computation of the Py, factors the following recersive formula is used:
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n-2

2n~1
Bo= T el CO° Yo Bo1= n+l Boz (2.2-39)

where the starter values are o = 1 and By = (1 + cos y()/2.

A second group of required covariances pertains to the cross-covariances (Cg)
between the observed signal and the predicted spherical harmonic coefficients, defined by
the reladons (2.2-13). The matrix K, which defines the metric in the space 13, may be
derived from the function K (P, Q) by propagation. Starting from the representation of
the anomalous potential on the sphere Rg:

T(RgoA)=3 3 (R‘%)M[zm Rom(0A)+ Bam Sam(0.1)]

n=2m=0 (2.2-40)
the coefficients are found from,
= f T(6,0)R,.(6,A)do, and
4n 7/,
B, =— f T(8,1),.(6.1) do.
4 v/,
(2.2-41)

Applying covariance propagation to K (P, Q) and using the operators defined in (2.2-41)

cov(anm,apq) —f[K(PQ)R (0.A) R, (0.1)do do

67 (2.2-42)

where do and do’ are differential surface elements on the sphere. Next, the function K
(P, Q) is substituted from equation (2.2-17) where Py (cos y) is expressed by the
decomposition formula. After the interchange of summation and integration and applying
the orthogonality properties, the result is (Moritz, 1980, p. 160)
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_ k,, \\
cov|anm anml = and
( e nm) 2n+1
cov (5,,,,, ;pq)= 0, for n#p or m#q or both. / (2.2.43)
Similarly:
- - k,
00V (bage Dam) = 57 and
Bpme Do) = 0, for n both.
cov (_m,, pq) or n#p or m#q or bo (2.2-44)
cov (Enm, qu) = 0, always. (2.2-45)
For the usual representation of T,
oo n n
T{r0.0) = ;kzi Y (%) Y [ﬁm cos mA + S, sin ml.] P, {cos ).
=2 " m=0 (2.2-46)
the corresponding covariance among the coefficients Com and Spm is easily found as:
2 B
= = \_ = 1.[R k,
o Cam C) = B S =i -

and zero in any other coefficient combination. Then the matrix K is a diagonal matrix of
infinite dimension:

(2.2-48)

where the value of ki; is the same for all coefficients of a particular degree n and
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C
Knn= ~ =[Css]-

2 2
y {n-1) 2n+1) (2.2-49)

In order to derive the matrix B defined in (2.2-10), the gravity anomaly and the
undulation are written in terms of spherical harmonics:

oo n+2 n
Ag (r,e,k) =Y 2 (n-l)(—l-:-) 2 [Enmcos mA + S, sin ml] ?m(cos 9),
n= m=0 '
(2.2-50)
and
oo R n+l q
N(r,8A)=R Y (7) > [Enm cos mA + S, sin ml] P om(cos 8).
n=2 m=0 (2.2-51)

Hence the element of the B matrix relating the spherical harmonic coefficients of degree
and order (n, m) to the anomaly measured at point P is:

[BC"; (n-1)(R " cosmh. B (cos@ )
= 'Y n- (— COSs cos

P Tp p-nm P (2.2-52)
Su] R n+2 _

[B =y(n-l)(— sinmA_P_.lcos@ ).
P Tp p Pan(c05 0, (2.2-53)

Equations corresponding to (2.2-50) and (2.2-51) for mean data are:

— s n+2 g
Ag(ro.\)= % Y (n-l)(%) )y [Enmf P (cos 8) cos mA do
n=2 m=0 °
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+Sim f P, . (cos 8) sin mA do],

° (2.2-54)

L n+l

Nir.o.1)= R Y (5—) zn: ff,,mf ﬁnm(cos 8) cos mA do +
O n=2 T m=0 o
+S;m f P, (cos 6) sin mA do},
¢ (2.2-595)

where © is the area of the block on the unit sphere, with block boundaries the parallels
@N, Ps and the meridians Ag, Aw, given by:

o= (XE— lw)(sin PN — sin (ps) . (2.2-56)

Note that R in the above equations is the scaling parameter associated with the coefficients
(_Inm and §nm . The integrals are computed analytically on the unit sphere, where do =
sinB d6 dA, and using the notation Pl for the integrated Legendre functions:

8,

Pl,,= | P,,(cos8)sin® do,
8=9, (2.2-57)

the integrals are as follows:

— PI
integral term of C,,, = n')"" [sin mA g — sin ml“J m#0

(2.2-58)

integral term of C,,, = PInm[XE— )*w] (2.2-59)
integral term of S = ﬂ'ﬂ[cos mAy, — COS m)LE] m#()

"mom v ’ (2.2-60)

integral term of S, = 0. (2.2-61)
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After further manipulation the above equations give the elements of the Cg matrix, which
are also derived by Sjoberg (1978, p. 8), although following a different argument.

A comparison between the practical application of the collocation formulation
presented here and the least-squares adjustment is made by Moritz (1980, pp. 166-167).
By estimating a finite number of coefficients s = [s] s3 ... sN]T, the infinite matrix B
reduces to dimension q x N; for N<q an overdetermined system of equations is to be
solved. The solution equation (2.2-11) is written:

1
s = KBT(BKBT+ D") 1 (2.2-62)

and, by applying a matrix identty:

- Tl R

S =(B D B+K’ ) B D I (22-63)
Since the matrices K and D are diagonal, the difference between the implementation of
equations (2.2-62) and (2.2-63) is that the first requires the inversion of a q x q matrix,
whereas the second of an N x N matrix. If the matrix K has the form:

K=2l (2.2-64)

where [ is the unit matrix and A a scalar, the equation (2.2-63) becomes:

1

§=(BTD'IB+-1— ) "Dl
A (2.2-65)
and forA = o
- T..-1 1 T -1
s=(8"p'B) B™D 1. (2.2-66)
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which is the least-squares adjustment solution of the observation equation model (2.2-10)
under the condition nT D-1 n = minimum and treating the coefficients s as non-random
parameters.

2.3 Toeplitz pattern and inversion algorithms

Practical applications of collocation are often limited due to the tedious computations
required. Most of the effort is spent in formulating and inverting the covariance matrix of
the observations, which makes the method prohibitive to use in applications where a very
large amount of measurements is involved. In order to work around this problem,
studies have been made in various cases to identify special properties of the covariance
functions and the underlying process, that result in patterned matrices consuming less
computational time for their formation or inversion or both.

In geodetic applications a certain pattern develops from data regularly sampled on a
sphere (Colombo, 1979). For data given on an equiangular grid under the assumptions
of complete coverage of the sphere, excluding the poles, and the covariance function
dependent only on the longitude separation between two points, the corresponding
covariance matrix is a block matrix of Toeplitz circulant blocks (ibid. pp. 4-5). Such
structure is exploited to enable a very efficient inversion of the covariance matrix as
demonstrated by Colombo (1981) in harmonic analysis of data on the sphere.

A Toeplitz matrix of dimension (N+1) x (N+1), is a matrix TN = [tk;], where for
each element ty; it holds that:

= tk-j, k,j=0,1,...,N. (2.3-1)

Then the matrix may be presented in the form:
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o
z
"

(2.3-2)

The matrix TN is a persymmetric matrix, that is, it has a symmetry with respect to the
secondary diagonal. There exists a general class of integral equations which reduce to
linear systems with Toeplitz type matrices (Tyrtyshnikov, 1980). The solutions of this
class have the following characteristic properties: a) the kernel is invariant under some
transformatons, and b) the region of integration is obtained from parts of it by applying
transformations under which the kernel is invariant. These invariance properties
correspond to the stationarity property of the stochastic processes and the associated
covariance function. In addition to the Toeplitz structure, the covariance matrices are
symmetric and positive definite.

A special case of a Toeplitz matrix is a circulant Toeplitz defined by the condition:
t .k =tN+1-k » k=12,..,N (2.3-3)

For example, such matrix is the covariance matrix of data equally spaced over a complete
circle, when the data belong to a stationary process. Also, the Toeplitz circulant pattern
appears for data regularly sampled completely over a sphere, as shown by Colombo
(1979). The advantage in inversion of such matrices is also explained by Eren (1980), by
demonstrating their diagonalization in the frequency domain.

Of particular interest in this study are block-Toeplitz matrices. Such structure is
completely equivalent to block matrices with Toeplitz blocks, which is the one followed
by Colombo (1979). It can be proved that a block Toeplitz matrix is transformed to a
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block matrix with Toeplitz blocks, and vice versa, by reordering of the data
(Tyrtyshnikov, 1980).

Consider the data arrangement, as shown in the figure 1, of equally spaced
observations along four parallels and three meridians:

M, M, M,
R 1 5 Jrg %
B2 2 F6 ho P2
Ps 3 AE Ti !
£ 4 BE (2 P4
‘ AN ———A)\ —

Figure 1. Data arrangement for the block-Toeplitz structure.

The covariance matrix of the observations arranged along the meridians (i.e. My, M3,
M3) may be written in terms of block matrices (i.e. M M|, M M>, ... etc), which are

teh covariance matrices between the observations on the corresponding meridians (i.e. M;
and My, Mj and My, ... etc).

MlMl M1M2 M1M3
C = M2M2 M2M3

symmetric MM, (2.3-4)

Then the matrices MM, MaMjy, ... etc, according to equations (2.2-34 to 36) are as
follows:
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-
f(q’l} f((Pp‘Pz, f((Pl,(Ps) f((pl,(p4,
MM, = (o) f(“’z'%) f(9294)
M symmetric f((p3) f(q’s’%)
A f((PA) 235,

The notation f (@1, @72) stands for “function of ¢ and @2" and so on. It is easily seen that

the covariances among the data within the meridians M3 and M3 are the same as for the
meridian My, i.e:

MiM; = MaM2 = M3M;. (2.3-6)

Now consider the covariances among meridians separated by AA.

f(p,.42) f(%%M)f(fpp%A?»)f((pp%M)-
f(z‘Pz’Ak) f“Pz’(Pstl’f.(‘Pr(PvAl)
symmetric f (q)J,AX) f ((p3,(p4,Al)

flooa? (2.3-7)

MM, =

It is also obvious that the matrices reflecting the covariances between any two meridians
separated by AA are the same:

MMz = M3, (2.3-8)

As already stated above the matrix C in equation (2.3-4) is a block Toeplitz matrix, where
the blocks are general symmetric matrices. Had the observations been ordered along the
parallels, instead of along the meridians, the matrix C would have been a general block
matrix, where the individual blocks are Toeplitz matrices. Note, that it is not necessary
for the parallels to be equally spaced, but only for the meridians, so that the resultant
matrix C is of the form described above.
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It follows from the Toeplitz structure and the symmetry of the matrix C that the top
row of blocks completely defines the matrix. In addition, the blocks are themselves
symmetric matrices, which substantially reduces the computations of forming the matrix,
as well as the storage requirement. Furthermore, the pattern of the inverse of Toeplitz
and block-Toeplitz matrices is such that the matrix is defined by cne row, while the rest
of the rows are easily computed by recurrence relationships (Kutikov, 1967). The
algorithm developed by Kutikov for the case of block Toplitz matrices is presented next.

Consider the block matrix of order (N+1) x (q+1) defined as:

FooTor-- - Ton
RN— I‘lorll
r r
| * NO NN | (2.3-9)

The algorithm has been derived under the following conditions:
a) RN is non-singular,
b) T'gs (fork,s =0, 1, ..., N) are square matrices of order (q+1), such that 'y = ' T,

and

1
) Y, CT,,Ci>0, [n=0,1,...,N),
k.s=0

i.e. the blocks are positive definite, and thus Ry is positive definite.

-1
In order to describe the structure of RN the block matrices A and B are introduced,
defined from the relaton:

-1
Rn =BT A B, (2.3-10)

which is valid for:
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Al I
2
Ay, O Byg I 0
A= 11 and B = 10
0
Al ByoB 1
! NN | NOENI . (2.3-11)
2
where Apn and Bak (0, k =0, 1, ..., N) are square matrices of order (q+1). Considering

block-Toeplitz matrices, the matrix Ry of equation (2.3-9) is written in the form:

[, T, .. Ty
r, T
RN— 1 0
ryry,.. T
| " NN 0 | (2.3-12)

T 2
Associated with the matrix Ry are the matrices Apg and Qqg, introduced as the By and

2
Ann in equations (2.3-11). Then the following recurrence relations hold (ibid):

Bpn = Amn =1, n=0,1,..,N (2.3-13)
Bn+1k = Bnk-1 + Bne1,0 Bnnk =1,..,nand
n=1,..,N-1 (2.3-14)
Ans1k = Ank-1 +Ans1,0 Bank » k=1, .. nand
n=1, .. N-1 (2.3-15)
Bn+10 = -Enﬂﬁn , n=0, .. N-1 (2.3-16)
An+10=- Hp Ain n=0, .., N-1 (2.3-17)
A2=3B,l., n=0,.,N
k=0 (2.3-18)

k=0 (2.3-19)
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n
E.=B,l,, n=0,..,N-I
k=0 (2.3-20)
n T
H=Y4a,l,, 1n=0,.,N-I
k=0 (2.3-21)

Now, let the inverse of RN be represented in terms of square blocks of order (q+1), then:

N N
Zoo --- ZoN
Ry =
N N
Zno -+ I (2.3-22)
Then they can be computed from the following equations:
N _[N]T_ .2
ZNI=[ZWl =ANNBND t=0,1,...,N. (23'23)
T T 2
N N N
Zs 1= [Zt—l.s-l] =Zy- [AN.N-s] QNNAN,N--l
T ,2
+[Bns.1] ANvBN (2.3-24)

s, t=1,2,..,Nands2t.

2 2
For the implementation of the above algorithm, the matrices BNk, ANN, ANk and QNN are
computed using the recursive relationships (2.3-13) to (2.3-21). Then equation (2.3-23)
-1
is used to compute the blocks of the bottom row of Ry. Then all other block rows are

computed by means of equation (2.3-24). This algorithm is simplified for the case of
symmetric blocks I’y (n =0, 1, ..., N). Thus, the formulae implemented in this work are

as described above, but with

2 2
Ann = Qnn , n=0,1,..,N (2.3-25)
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Bok = Ank » k=0,1,.. n-1and
n=12 ..N. (2.3-26)

In addition to the Toeplitz inversion, a partitioned inversion algorithm has also been
implemented in this work. Let

r[A B]

“|C D (2.3-27)

Where A, D and T are square matrices. Then the inverse of T is given (Faddeeva, 1959)

T'1=[P Q]
R S (2.3-28)
where:
\ -1
S =(D-CA' B)
Q=-A"'BS
R=-SCA™
P=A"-A'BR
(2.3-29)
For a symmetric matrix T the above equations become:
A B L lp
T=[ T } andT‘=[ TQ]
B'D Q'S (2.3-30)

where:
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S =(D-BTA'1B)-1
Q=-A"'BS

-1 -1 T
P=A"-A"BQ (2.3-31)

This partitioning is applied several times for the inversion of the covariance matrix and it
essentially results in a form of stepwise or sequential collocation (Moritz, 1980, sec. 19).
However, in that case, a new term which reflects the influence of new measurements is
added directly to the predicted signal and the associated covariance matrix.




CHAPTER 11
IMPLEMENTATION OF THE COLLOCATION PREDICTION FORMULAE.

3.1 The auto-covariance matrix of the observed signals

In implementing the matrix formulation (2.2-11) for the predicted potential harmonic
coefficients and (2.2-14) for their error covariance matrix, one is faced with the
theoretical requirement of positive definiteness for the covariance matrices. Additionally,
the covariance matrix of the observed signal, Cy;, must be numerically non-singular to
enable the computation of predicted signals for the case of errorless observations. Since
the theoretical and numerical properties of this matrix are determined completely by the
covariance function and the particular data sampling employed, both of these factors will
be examined below with regard to the positive definiteness and the singularity or
numerical instability of the matrix Cy;.

At first, the positive definiteness of the signal auto-covariance matrix is examined,
which is equivalent to the positive definiteness of the covariance function in the case of a
continuous signal (Moritz, 1976). This property is expressed by equation (2.1-6) for the
covariance function K (P,Q). Considering the form of the fundamental covariance
function implemented here, as given by (2.2-20), this condition is subsequently
transferred to the degree variances k,. By means of the correspondence of the covariance
function and the power spectrum of the disturbing potential, the set of all degree variances
kp constitutes the power spectr-m (Colombo, 1981, p. 5). Then, a necessary and
sufficient condition for the covariance function to be positive definite is the condition for
the power spectrum to be positive (Moritz, 1976, p. 14), i.e.

kn>0, foralln. 3.1-1)

The above is also seen from a different viewpoint by considering an equivalent to the
spectral decomposition of the matrix Cy, namely the eigenvector and eigenvalue
decomposition (Colombo, 1979, p. 14); the matrix of dimension q is given in terms of

47
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the eigenvalues A; and eigenvectors p;

T
Cu= ili HiH; .
i=1 (3.1-2)

Then the positive definiteness of Cy is assured for positive eigenvalues, and the matrix is
invertible only for

Ai>e>0, fori=1,..,q (3.1-3)

where € is a sufficiently large number to avoid numerical problems. Should the equality
be allowed in equations (3.1-1) and (3.1-3), the covariance function will be positive
semi-definite and the matrix Cy will be singular, as footnoted by Moritz (1980, p. 93).
From the preceding arguments one can conclude that, when using the series covariance
function expressions, the summation should theoretically be carried out to infinity in
order to avoid singularity of the covariance matrix.

This fact is also evident by examining the matrix formulation of the collocation
prediction. In particular, equation (2.2-13) where the matrix Cy is given from:

Cn = BKBT. (3-1'4)

As shown in equation (2.2-48), K is a diagonal matrix. If the values of k; are set to zero
for n > Nmax, then

Rank (K) = (Nmax + 1)2, (3.1-5)

which is the number of coefficients of the spherical harmonic expansion to degree Nmax.
Then, assuming that B has full column rank,

Rank (Cy) = Rank (BKBT) = Rank (K) = (Nmax + 1)2, (3.1-6)
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while the dimension of Cy is the number of observed signals. Finally, it may be stated
that the disturbing potential function belongs to an infinite dimensional space, thus
involving an infinite number of frequencies, or equivalently, infinite spherical harmonics.
This fact is also inherent the definition of the geodetic boundary value problem describing
the unknown potential function to be regular outside the attracting masses including
infinity, which, in tumn, is by definition expandable to a converging infinite Taylor series.

So far, the covariance function analyzed relates to point data, as expressed by the
equations (2.2-20), (2.2-26) and (2.2-33). When the observed signals are area mean
values, the corresponding covariance function for the gravity anomaly, for example, is
given by (Sjoberg, 1978, p. 4).

1

f f C(P.Qdopdog

cov(Agp, Ag&:
OpOQ~ 0s” g (3.1-7)

where Gp and GQ are the areas on the sphere that the values of Agp and Agq,
respectively, represent. To lessen the computations involved with the above formula, an
approximation is implemented in this study as given by equations (2.2-34) to (2.2-36).
These formulae approximate the mean covariance functions by smoothing the respective
point covariance functions by means of the Pellinen smoothing operators B, (equation

2.2-39)). These operators, derived by Meissl (1971, p. 23), are called smoothing
operators in the narrow sense, since the properties B i 0 and Bp = 1 hold, thus

reproducing the constant part and damping the irregularities of the function they are
applied to. This approximation of the mean covariance function has been adopted by
Sjoberg (1979) for 10° equal area means successfully, but it is rejected by Colombo
(1979, p. 13) as too crude of an approximation, except for the case of a very fine grid.
The dependence of the approximation on the area block size is expected, since the
operators are derived over a circular area with angular radius g, which is here
approximated by the block area on the sphere (6) and the equivalent spherical cap radius
VYo, given by (2.2-38).
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The possibility of utilizing the approximation of the mean covariance function with
the point covariance computed at the appropriate altitude as suggested by Tscheming and
Rapp (1974), has been examined by Sjoberg (1978) and abandoned by him due to the
poor results obtained in his computations.

Clearly the discussion pertaining to the relation between the point covariance function
and the singularity of the covariance matrix is valid for the mean covariance functions
implemented in this work. They have the same analytical form, but with a smoothed set
of degree variances instead of kp,.

Regarding the actual computations, the truncation of the series is necessary, and
therefore a choice on the maximum degree included in the summation must be made.
Sjoberg (ibid.) found Nmax = 200 acceptable for his application. Later on, Colombo
(1981) analyzed thoroughly the truncation effect by comparing his mean covariance
function approximation (ibid., p. 84) and formula (2.2-34) with the rigorous covariance
function in equation (3.1-7), computed by numerical quadratures. His experiments
included values of Nmax = 180, 300 and 400, for 5° and 1° block mean gravity
anomalies. The reported discrepancies in covariance vary among different cases
considered. In the case of 5° blocks the discrepancy reaches the maximum of 8% for
blocks near the pole and Nmax = 180, whereas for 1° blocks the difference is at most 5%
near the poles, for Nmax = 180.

In this study the values of Nmax = 180 and 360 were used, but the value of Nmax =
3000 was only used in a single experiment. The sufficient Nmax value was judged on
the basis of the final results, namely the recovery of the input potential coefficients, which
will be discussed in detail in the next chapter.

In the following, figures 2 and 3 show the point covariance functions for Ag and N
respectively, computed from equations (2.2-26) and (2.2-33), at 1° intervals, where the
summation is carried out to Nmax = 180. The anomaly degree variances c, have been
computed by means of equation (2.2-25) using the spherical harmonic potential
coefficient set OSUS6F.HARMIN.TO360, described by Rapp and Cruz (1986b). In
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order to show the covariances for the mean gravity anomaly signal, figures 4, 5 and 6
have been created by plotting the point covariance function (as in figure 2) and the mean
covariance functions, at 0705 intervals, for polar and equatorial blocks, for equiangular
grids of 10°, 5° and 3° respectively. The mean covariances were computed from equation
(2.2-34) with the same parameters (¢, and Nmax) used in the point covariance
computation. It may be seen that there is a larger effect of the smoothing operators on the
equatorial block mean function, these blocks being larger in area, while the polar block
mean function rapidly approaches the point function. This is more prominent when
decreasing the grid size; in particular for 3° grid the difference between the point
covariance and the polar block mean covariance is at most 17 mgals2. Similarly, figures
7, 8 and 9 show the point and mean covariance functions, computed at 0705 intervals, for
the undulation signal. The differences among the three curves in each figure are much
smaller and the effect of the smoothing is not as prominent, due to the undulation being a
low frequency signal. In particular, even for the 5° grid, the polar block mean covariance
function almost coincides with the point covariance, with maximum difference of 0.8 m2.
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As stated in the beginning of this section, the data distribution is the second factor
that, together with the covariance function, completely determines the matrix Cy; it is
discussed next. One related aspect is the number of the observed signals, which should
be sufficient to provide a solution. However, the signal should be appropriately sampled,
since the data spacing defines the frequency content of the observed signal and therefore
the recoverable information. In particular, for a regular grid where A = AA, the global
sampling covers a system of Np parallels and Nm meridians, where Nm = 2Np, and the
Nyquist frequency is Nq = Np. It is known that it is not possible to estimate a complete
set of spherical harmonic potential coefficients to degree and order n 2 Nq (Colombo,
1981, p. 11). When dealing with overdetermined systems, as is generally the case in
least-squares collocation, repeated measurements of the same type, result in identical
rows of the covariance matrix Cy;, and consequently in singularity (in errorless
collocation).

All the above arguments point to the fact that it is neither necessary nor appropriate to
include large amounts of data, but instead, one should determine the optimal data
distribution which could convey the maximum possible information to estimate the
gravity field up to degree and order N (: N < Nq). Giacaglia and Lundquist (1972) have
derived an optimal grid of (N+1)2 sampling points on the sphere, by utilizing (N+1)2
independent sampling functions. At each point, only a single sampling function has a
non-zero value and therefore the coefficients of this sampling-function expansion
represent the gravity field at the grid points. Also, a one-to-one linear transformation
between the above expansion and the spherical harmonic expansion to degree N is
derived analytically.

Despite the economy of such grids, the most commonly used grid is the equiangular
or regulur grid, because it is easily defined and facilitates the data processing. In this type
of grid consisting of rows of parallels, each including discrete points, the poles constitute
singular points. Hence, they are eliminated form the grid, unless they are individually
handled as two discrete points, as demonstrated by Bose et al. (1983). Still the problem
is not completely overcome, since the polar areas cause numerical instability in the
covariance matrix as it tends to singularity for finer grids. This problem, also reported by
Colombo (1979, p. 13), is numerically shown in the next two tables. The condition
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numbers computed from the ratio of the largest to the smallest eigenvalue of the
covariance matrices, are used for a relative measure of the effect of the polar area data on
the numerical stability of the matrix.

The "limited" data sets are defined by neglecting data referring to latitudes larger than
165° and +67.5° for 10° and 5° grids respectively.

Table 1. Condition numbers of covariance matrices for 10° regular grid.

Case global Ag limited Ag global N | limited N
data set data set data set data set

number of

zero eigenvalues 0 0 0 0

condidon

number 0.3x106 0.9x103 0.2x1010 0.2x106

Table 2. Condition numbers of covariance matrices for 5° regular grid.

Case global Ag limited Ag global N limited N
data set data set data set data set

number of

zero eigenvalues 21 0 44 0

condition

number N/A 0.2x10% N/A 0.4x106

It is seen that the condition of the matrices generally improves when the polar area
data are excluded from the 10° global data set as indicated from the decrease of the
condition numbers by a factor of 103 to 10%. In the cases concering the 5° grid the
apparent singularity for the global data sets is eliminated when considering the
corresponding limited data sets.

Instability and singularity are also caused by decreasing the grid size, whereas the
global covariance function cannot distinguish numerically between any two adjacent data




62

points, thus producing two almost identical rows of the covariance matrix. Within the
same reasoning the undulation auto-covariance matrices are ill-conditioned when the
corresponding gravity anomaly ones are not. Tables 1 and 2 show smaller condition
numbers for the Ag covariance matrices than the corresponding N ones. This is due to
the undulation covariance function being even less discriminating, i.e. of low frequency
content. Evidence to this end may be also found in the figures presented in this section.
Specifically figures 4, 5 and 6 show a large decrease of the covariance values for
spherical distances Wy : 0° < y < 2°, while the covariances in figures 7, 8 and 9 drop
slightly within the same v interval. In addition, figures 8 and 9 show that the mean
covariance for polar blocks coincides with the point covariance for 5° and 3° regular grids
respectively.

3.2 On the regularization of the covariance matrix.

Fundamental definitions and concepts will be exposed below, aiming to provide a
concise interpretation of the experiments that will be presented in the next chapter.

When solving a problem in practice, the meaning of a "solution" must be defined as
well as the features of the computational algorithm that can be used to obtain a solution.

Consider the equation
Az(s)=u(x) 3.2-1)

where A is a known continuous operator, z(s) is the unknown function in a space S; and
u (x) is a known function in a space S;. Suppose that for some u = u; (x) the function
z1(s) is a solution of equation (3.2-1),

A z1 (s) =uy (x). (3.2-2)
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Generally, values of the function u; (x) are measured, and consequently only an
approximation u (x) of u) (x) is known. The difference between u (x) and uj (x) is
measured in the metric of the space Sy as the square root of an inner product ps, (u;, u;)
of the difference function [u (x) - uj (x)]. An approximate solution of equation (3.2-1)
may then be found, where the error of the approximation is measured in the metric of
space S2 by taking the square root of an inner product ps; (zi, j), of the difference
functon {z (s) - z (s)]. For certain operators A it can be proved (Tikhonov and Arsenin,
1979, p. 4) that for an arbitrarily small difference between u; (x) and uy (x), the
difference between the corresponding solutions zj (s) and z3 (s) can be arbitrary. In such
cases the solution is not stable under small changes in the initial data u (x), which brings
up the distinction between two groups of problems: well-posed and ill-posed problems.
It is of interest here to note that the introduction of this concept was made in the attempt to
develop appropriate boundary conditions for differential equations, for example the
Dirichlet and analogous conditions for elliptical equations.

The precise mathematical definiton of a well-posed problem is given below (ibid.,
p- 7). Consider equation (3.2-1), where for every element u € Sy with metric ps; (uy,
up) there exists a unique solution

z=R (u) 3.2-3)

in the space S with metric pg, (), z2). The metric is determined by the formulation of
the problem. The algorithm for determining the solution z is said to be stable on the

spaces (Sy, Sp) if, for every positive number €, there exists a positive number & (€) such
that the inequality

Psy (ug, u2) <3 (e) (3.2-4)
implies

Psz (z1,23) <€, (3.2-5)




where z; =R (u}) and z3 =R (u3). The problem of finding the solution z in the space Sj
from the initial data in the space S is said to be well-posed on the pair of metric spaces
(S1, Sp) if the following three conditions are satisfied:

(1) for every element u € S there exists a solution z € S;

(2) the solution is unique;

(3) the problem is stable on the spaces (S, S7).

Problems that do not satisfy the above conditions are called ill-posed. In concept, the
conditions (1) and (2) verify that the problem at hand is determinable from the
mathematical point of view. Condition (3) indicates whether the problem is numerically
determinable from the approximate data.

At this point it is clearly understood that the definition of an approximate solution of
an ill-posed problem is vague. Still, this is not a sufficient reason to completely avoid
any such problem, since there is a large class of problems for which workable solutions
are necessary. For example, the inverse operator A-! of the continuous operator A in
ccjuation (3.2-1) is not generally continuous on S} and, in that case, the solution will not
be stable under small changes in u. Procedures may be developed for finding possible
solutions by utilizing additional quantitative information, thus leading to a quasi-solution.
On the other hand, when qualitative information is available, a procedure called
regularization can be used to construct stable approximate solutions.

The essential concept of the regularization method is that of the regularizing operator
(ibid., p. 47). An operator R (u, @) depending on a parameter « is called a regularizing
operator for equation (3.2-1) if
(1) there exists a positive number 8;, such that R (u, a) is defined for every o > 0 and

every u € S for which

pSl (u, UT) _<. 8 S 8] (32’6)

with ut being the exact value of u, and




65

(2) there exists a function a = o (8) such that, for every € > 0, there exists a number
8(e)<8, for which the inequality

Ps; (uT, ug) <3 (€) , where us € S (3.2-7)
implies

Ps2 (2T, Zo) S €, where (3.2-8)
zy = R (ug, a (8)). (3.2-9)

Thus, a solution zq, called a regularized solution, can be obtained from R (ug, o (8)),
where o is a numerical parameter called the regularizaiion parameter, by definition
consistent with the accuracy d of the initial data.

Although there is no uniqueness assumption for the regularizing operator, it is critical
to devise methods for constructing regularizing operators. Usually the variational method
is implemented (ibid., p. 50) where a certain functional, called the smoothing functional
is minimized. For example:

2
a
M7z, u]=p, Az, u)+ € Qfz], (3.2-10)

with Q (z) a stabilizing functional. Another useful method makes use of the spectrum of
the operator A.

The method outlined in principle above, known in literature as Tikhonov
regularization, was implemented by Rummel, et al. (1979). Considering equation (3.2-1)
where u and z belong in real Hilbert spaces and A is a continuous linear operator, a
minimum norm condition is invoked. In particular:
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. 2 2
min {|| Az - ug 1+ a"zllc;l‘ , oa>0 (3.2-11)

where g is the observation vector, D is the 2 priori covariance matrix for the noise and
Cz. the 2 priori covariance matrix of z. Then, the soluton is obtained from

-1
T. -1 A Tl
zg:(A D A+aCu} A D uq (3.2-12)

or equivalently from

1

T T )

The only difference between the above equation and the least-squares collocation formula
(2.2-11) is the regularization parameter a., although in practice it is often implied by

scaling the actual error covariance matrix D.

Equation (3.2-13) is recommended by Colombo (1979, p. 15). and it is also
implemented in this study, when the grid size is small so as to give rise to unstable
covariance matrices. The instability is manifested both in the elements of the inverse
matrix and in the estimated signal vector which shows large discrepancy from the true
solution. It is important that caution should be exercised in selecting the regularization
parameter Q, in a way that will stabilize the solution but also minimize the loss of
resolution in the initial data, which is expected due to the regularization process. For this
reason it is beneficial to interpret the parameter & as a factor varying the weight with
which the covariance information C,; influences the solution. The essence of o may be
also seen in the frequency domain by analyzing the eigenvalues of the data covariance
matrix Cyy = A Cz AT. Again, the fact that the parameter a alters the spectrum of the
data covariance shows that it should be chosen compatible with the magnitude of the error
in the initial data.
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3.3 Computational algorithm and software development

Since it has been a considerable part of this ettort to develop workable software for
the boundary value problem solutions studied here, it is reasonable to present the
sequence of required computations, together with the basic characteristics of the
algorithms, the storage schemes and some computer execution times.

Most of the programs were developed and tested on the IBM 3081-D mainframe
computer with 32 megabytes of memory, available at The Instruction and Research
Computer Center, at The Ohio State University. The detailed computations were done on
a CRAY X-MP/48 Supercomputer available at the Pittsburgh Supercomputing Center
(PSC), at Carnegie Melon University and the University of Pittsburgh.

Although no special effort was made to improve the source code so as to take full
advantage of the vector processing of the CRAY X-MP/48, worthwhile savings in
execution time were still realized. It seems very realistic to expect that substantial
improvement will be achieved with certain software modifications to enable large scale
solutions and the determination of high degree spherical harmonic expansions for the
disturbing potential. A crucial factor to this is the continuing upgrading of the CRAY
supercomputers. The CRAY X-MP/48 supercomputer at PSC is currently (January,
1989) being replaced by the CRAY Y-MP/832, while a CRAY-3 is scheduled to arrive in
October, 1990. A comparison among the three mentioned supercomputers with regard to
their features is given in table 3.
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Table 3. Supercomputer upgrading at PSC.

Hardware specifications X-MP/48 Y-MP/832 CRAY-3
Number of processing units 4 8 16
Memory in Megawords 8 32 512
Clock cycle in nsecs 9.5 6 2
Floor space in square feet 112 98 <16
Performance in MFLOPS* 840 2,700 16,000

* MFLOPS "millions of floating-point operations per second”, is the overall measure of
large-scale computing performance. It indicates the number of floating point additions,
multiplications, etc, which the system can do in one second.

Next, the sequence of computations is described briefly. Figure 10 is offered for
further illustration of the whole algorithm in a block diagram where each block represents
a separate computer program.
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Figure 10. Sequence of computations
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In the beginning the covariance matrix is formed in three steps using as input a
spherical harmonic potential coefficient set and the data distribution. The latter consists of
the number of data groups, and for each group, the grid specification and location,
namely: the number of parallels, number of meridians, grid spacing, latitude and
longitude of the utmost northwest point, and data type. During the first step the auto-
covariance matrix of the largest data set is formed. This matrix is a block-Toeplitz matrix,
as described in section 2.3; therefore, only the top block-row elements are computed, and
for each block of dimension Np (Np is the number of parallels in the group) only
Np(Np+l)/2 elements are formed. A total number of Nm (Nm is the number of
meridians) symmetric blocks are formed and stored in a vector array on disk. The
elements actually computed are shown in the shaded area of the diagram of figure 11.

e—— NpX Np ————»

s
Np

!

Figure 11.  Sufficient elements for the auto-covariance matrix in a single data group.

In the second step, the types of computations performed in the first step are done in a
sequential mode, and an auto-covariance matrix is formed for each data group. Then all
are stored in one vector on disk. In the last step, the cross-covariances between any two
data groups are computed. These covariances are also formed into matrices which are
rectangular and therefore do not have the Toeplitz pattern. However, some pattern exists,
that may be called "pseudo-Toeplitz", since it possesses a similarity to the Toeplitz one.
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This pattern, illustrated in figure 12, allows for the matrix to be fully defined by its first
block-row and first block-column, with each block in position (i, j) being repeated at the
positions (i+1, j+1), (i+2, j+2) etc.

_—|

Nplx le

Figure 12. Sufficient elements for the data cross-covariance matrices.

Such structure can offer substantial savings in computer time, but it has not been
exploited in this work. After computing the covariances for all possible combinations of
data groups, they are stored in a vector on disk.

In the next step of the sequence, the inversion of the covariance matrix takes place.
This is again done in two steps, as indicated in the diagram of figure 10. First, the
covariance matrix of the largest group is inverted by the Toeplitz algorithm. The
equations for this algorithm have been presented in detail in section 2.3. The input
consists of the vector containing the auto-covariance matrix elements (shown in figure 11)
and the output is obtained in blocks (of dimension Np x Np) starting form the bottom
block-row. When the core memory is sufficient the elements of the blocks are stored in
the matrix in symmetric storage mode. For solutions requiring larger memory the
individual blocks are stored on disk as they are computed or they are multiplied directly
with the data vector. Execution times for forming the covariance matrices for global data
coverage and various gnid sizes arc presented in table 4, together with the r- ,pective
Toeplitz inversion times, for both IBM and CRAY compute runs when possible.
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Table 4. Time consumed in forming and inverting Toeplitz covariance matrices.
gnd [Number of [ Numberof | Mammx IBM-3081-D time | Cray X-MP/48 time|
size | parallels | meridians | dimension in seconds in seconds
ormation [inversion |formation [ inversion

P 6 12 72 1. 0.2 0.1 0.1
xr 9 18 162 3.0 1.1 0.3 0.5
15° 12 24 288 7.0 4.4 0.7 1.6
10° 18 36 648 11.0 35.5 2.6 11.1

5° 36 72 2592 - - 17.2 98.9

4° 40 90 3600 - - 28.0 338.6

Next, the partitioned inversion is performed in a sequential mode, as illustrated in
figure 13. Each time another group of data is added, the most recently computed inverse
is used in symmetric storage (e.g. matrix 00) together with the auto-covariance matrix of
the next data group (e.g. matrix 11) and the corresponding cross-covariances (e.g. 01).
Then, the augmented inverse is computed according to the algorithm given in section 2.3
and stored is symmetric storage where it can be used as input when a new group is
considered.

01 02

11 12

22

Figure 13. The configuration of the partitioned inversion.

The simulated data is generated using a spherical harmonic potential coefficient set
and the integrated associated Legendre functions residing on disk. The Fortran programs
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F428AV1 and F431AV2 were used from Prof. R.H. Rapp's program library, Dept. of
Geodetic Science and Surveying. Program F428AV1 was used for the associated
Legendre function computation utilizing Paul's algorithm (Paul, 1978). A modification
of program F431AV2 was used to derive mean gravity anomalies and mean geoid
undulations on a sphere. This program was developed by Colombo and it is described in
detail by Colombo (1981). The Fast Fourier Transform algorithm implemented in this
program generates most efficiently the data values along parallels, creating a global set of
values referring to the center of the blocks as far as the computation of the spherical
distance, v, is concerned. A short program was written to retrieve the appropriate data
values given a grid configuration and a particular geographic location by defining the
utmost northwest point. The following program was developed to collect all data values
in a vector, add random noise, and multiply it with the inverse of the covariance matrix
thus obtaining, what is called here, the first solution vector.

After a slight modification, program F428AV 1 was used to compute the integrated
associated Legendre functions in groups in accordance with the order of the data in the
observation vector. These data were stored on disk and used in the program that was
designed to compute the covariance matrix between the estimated coefficients and the
data, on an element-by-element basis. These elements were multiplied by the appropriate
elements of the first solution vector and were summed into two vector arrays; one for the
(—Inm and one for the §nm coefficients, thus producing the estimated coefficients.
Substantial time savings were made possible by using recursive formulae for the
computation of cos mA and sin mA required in the equations (2.2-58) to (2.2-61). In
particular, the formulae:

sin na = 2 sin ((n-l) a) cos a — sin ((n-Z) a) (3.3-1)

cos na = 2 cos ({n-l) a) COS O — COS ((n-z) a) (3.3-2)

were used, where only three previously computed sines and three cosines were saved
thus completely avoiding any firther trigonometric function calculations. Another
version of this program takes the inverse of the data covariance matrix as input and
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computes the estimated coefficients and their estimated accuracy, using one row of the
cross-covariance matrix at a time. In this approach the entire inverse matrix is needed in
core, thus increasing the memory requirements, while the computations are overall very
time consuming.

Finally, statistics for the recovery of the input potential coefficients are computed
using program F159 from Prof. R.H. Rapp’s library. Also, additional statistics and
differences are computed as discussed in detail in the next chapter.

The software used in the computational scheme described in this section was written
by the author, unless credited otherwise. In particular, the source code for forming the
various types of auto- and cross-covariance matrices, the block-Toeplitz and sequential
inversion routines and the source for the calculation of the potential coefficients and their
accuracy constitute the majority of the utilized software and were developed and tested by
the author.




CHAPTER IV
NUMERICAL RESULTS AND ANALYSIS

4.1 General experiment strategy

Chapters I and II focus on conveying the role of the overdetermined problem within
the general framework of the geodetic boundary value problems, and in presenting the
justification for a collocation estimation of the spherical harmonic parameterization of the
disturbing potential. The formulation of the methodology is given through the equations
of chapter II, while theoretical and practical aspects of the implementation are discussed in
chapter II1.

This chapter is included for the analysis of the experiments performed with the
purpose of evaluating the methodology in terms of both accuracy and overall
applicability. The experiments were designed to utilize synthetic data thereby providing a
definite control for the evaluation of the results and, at the same time, simplifying the data
processing.

Starting with a given spherical harmonic potential coefficient set, in particular
OSU86F.HARMIN.TO360 (Rapp and Cruz, 1986b), point and mean gravity anomalies
and geoid undulations are computed. Also, the anomaly degree variances implied by the
same field are used in the computation of the anomaly and the undulation auto-covariance
matrices, as well as the cross-covariances between the potential coefficients and the
anomaly and undulation signals. The specific details of the actual calculations are given
in section 4.2. A set of potential coefficients is estimated using collocation and the
simulated anomaly and undulation data and the necessary covariances. The estimated
coefficients are compared against the input coefficients, thus determining their recovery.
A number of different quantities are then computed in order to measure the recovery of
the coefficients. These quantities are the following:

(1) The correlation between the two coefficient sets per degree n, as computed from the
equation:
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Q,
R,= > 2<n<Nmax
joren]
Gn 0y 4.1-1)
where
n ’ v
Q= z (Cx\mcnm+ SnmsnrrJ ’
m=0 4.1-2)
2 & (A2 2
On= Z ‘Cnm+ Snm and
m=0 (4.1-3)
2 & 2 2
o, = Z(Cnm+ S,,m)
m=0 (4.1-4)

The reference coefficients are denoted by Cnm and Sym, while the estimated ones are
denoted by Chm and Snm-

(2) The average correlation between the two coefficient sets is also computed by
averaging the correlations from (4.1-1), i.e:

Nmax
> R
i=2

R= Neoax 1

(4.1-5)

(3) The percentage difference (PN) for each degree (n) is computed from the equation:
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n ]
¥ (Acﬁm + AS,Z,m)
m=0
PNn = x 100,
- [ ~2 2
z (Cnm +8 nm)
| ™0 | (4.1-6)
where the difference between the input and the recovered coefficients is:
AC,, =Cym-Chnand AS =S, ,-S. (4.1-7)

(4) The percentage difference is calculated for the complete coefficient set as an average

given by:
Nmax
2 PN;
=
PS = _.l._.— .
Nmax - 1 (4.1-8)

(S) The recovery of the input field is also measured in terms of the difference in the
gravimetric quantities. In particular; the root mean square difference in undulation per
degree is computed as:

n
n 2 2
UNA, =R| 3 |AC,,+AS .
m=0 (4.1-9)
and cummulatively to degree Nmax:
2
Nmax n 2 2
A=R 2(ACM+ Asm,) .
n=2 m=0 (4.1-10)
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where R is the earth mean radius.
(6) Similarly the root mean square difference in gravity anomaly is computed from:
Vi
L1} 2 2
AAC, =y[n-1)] Y |AC, _+AS
m=0 @.1-11)
and cummulatively:
w2
Nmax 2 n 2 2
TG=7| Y, (n-1) Y (ACnm+ Asm) .
n=2 m=0 4.1-12)

(7) The recovery of the input coefficients is also evaluated with respect to the estimated
accuracy (G) of each coefficient by calculating the quantities:

C. -C.
DNC, = —=—"T and
o Id
Cam (4.1-13)

Snm'snm

DNS, = —=
S (4.1-14)

(8) Finally, an average value of the above statistics is computed per degree as

m=0

RMS =

v
3 (one?, + DNsﬁm)]

Neoef (4.1-15)

where Ncoef is the number of coefficients in the degree n.
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Within the general construction of the experiments as defined above, there are several
inter-related factors that influence the problem and the final recovery of the input
coefficients. Since the most critical objective of this study is the combination of different
data types, all aspects have been analyzed with regard to the two data types: gravity
anomaly and undulation. The specific aspects analyzed and presented in the following
sections include: a) the representation of the data as point or mean values, b) the
approximation of the appropriate covariance functions and the truncation in the series
formulae, c) the error of the data in connection with the regularization procedure and d)
the size of the regular grid and the recoverable frequencies of the field.

4.2 Specifications for the data simulation

This section specifies the details of the input in the actual computations that were
outlined generally in the previous section.

Boundary values of mean gravity anomalies and geoid heights were computed with
program F431AV2 (Colombo, 1981), which in principle implements the equations (2.2-
54) and (2.2-55). Modifications were made to compute the data on the surface of a
sphere of radius Rg using the equations:

— Nmax n+2 n
Ag(RE.6.1)=% > (n_])(ﬁR;_) Z[C—nmf P_..(cos 8)cos mA do +
n=2 m=0 (o}

§nmf P, (cos 8) sin mA do]
° (4.2-1)

n+l n
R—) > [Em f P, (cos 8)cos mA do +
Bl m=0 c
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Sim f P, (cos 8) sin mA do]
o (4.2-2)
where G is given from equation (2.2-56) and
GM
Y=—7-
R (4.2-3)

Since the OSUS8GF spherical harmonic potential coefficients (Rapp and Cruz, 1986b)
were used here, the associated scale factor with this particular expansion is also used,
which is R = a. = 6378136 m. In addition the GRS80 constants were used, specifically:

f=1/298.2572
GM = 0.3986005 x 1015 m3/s2 and

®=7.292115 x 10-5 rad/sec.

The normal field implied by the GRS80 constants is subtracted from the input
coefficients by subtracting the zonals of degrees 2, 4 and 6. Then a global set of mean
gravity anomalies or undulations is computed. The maximum degree of the expansion
(Nmax) and the olock size are given as input, although the latter is limited to exact
dividers of &, so that the global number of latitude belts is even. Under this scheme there
are no blocks crossing the equator, and the data for two latitudinal parallel rows that are
symmetric with respect to the equator are calculated simultaneously, by taking advantage
of the symmetric and anti-symmetric properties of the integrated Legendre functions. The
data calculated for this work refer to blocks of 10°, 5°, 3° and 2° with maximum degree of
expansion 18, 36, 60 and 90 respectively.

After the data were generated and stored on disk ordered along the parallels, it was
retrieved in a whole or partly and reordered along the meridians, in order to obtain the
block-Toeplitz pattern implemented in the covariance matrices. At the same time the
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option of adding random error is made available, by utilizing a Gaussian random deviate
generator routine from the IMSL software package. First, the subroutine generates a set
of uniform pseudo-random numbers in the exclusive range (0, 1) given a seed value.
Then, these numbers are transformed to normal (0, 1) deviates using the inverse normal
probability distribution function. Finally, normal (0, 62) deviates are computed by
scaling the generator output by the standard deviation G.

Consistent with the data simulation is the computation of the auto-covariance and
cross-covariance matrices by means of the equations given in section 2.2. The OSU86F
potertial coefficients were used in equation (2.2-25) to compute the anomaly degree
variances ¢y after reinoving the normal zonals of degree 2, 4 and 6 computed from the
GRS80 constants. The coefficient scaling factor, R, was used and the value of the ratio
s, in equation (2.2-26), was taken as s = 0.999617. Then the radius R is defined as

RE=

R2
< = 63793578 m,

(4.2-4)
which is several kilometers larger than the earth mean radius.

The ¢, values as computed refer to a sphere of radius R, but the equations used ¢ -
the computation of the data covariances (eg. equation (2.2-34)) refer the cp values, ¢ d
therefore the covariances, to a sphere of radius Rg by means of the term (Rz/RE)“*‘2 as
explained by Rapp (1988).

In case that the radius R in equation (2.2-34) is different than the coefficient scaling
factor, the anomaly degree variances computed from these coefficients should be
transformed accordingly (Moritz, 1980, p. 181). This is generally done to improve the
way the series expression converges by choosing the radius of an imbedded sphere Rp.
Then the c,, values are to be multiplied by the term (R/Rg)2"*4, which is an option built in
the programs for the covariance calculations. However, due to the use of simulated data
only, the radius Rg is adjusted instead.
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4.3 The effect of the covariance functions on the potential coefficient
recovery

The first issue to be addressed is whether it is preferable to use point or mean values
as boundary data. Sjoberg (1978) did not examine this in his work, because the available
data base at the time consisted of actual area means. On the other hand, Colombo derived
the formulae to utilize either point or mean data for harmonic analysis of the disturbing
potential on the sphere. He underscored the complexity of this issue but did not provide a
definite answer (Colombo, 1679, p. 22). Some intuitive argument was given in support
of representing the data as area means; in tais case the aliasing is expected to decrease,
since the averaging has smoothed out the higher frequencies and only slightly modified
the lower ones. No further insight was made available, since in the simulation studies
reported by Colombo (1981, p. 33) only area mean data were considered "because area
means are preferred for collating information, particularly on a global basis, at present”.

Since no conclusive information is available from previous research, it was
considered reasonable to undertake a first experiment with point boundary data. For the
specific experiment point gravity anomaly data were simulated at a 10° regular grid on the
sphere Rg, using Nmax = 18 for the degree of expansion. The auto-covariance matrix
was computed by truncating the summation of the point covariance function at 180.
Also, the values of 18 and 36 for maximum degree of truncation resulted in singular
matrices as seen from the extremely large elements in the calculated inverse and the zero
eigenvalues. The reason fo~ t* singularity is explained in section 3.1. These
computations ended in absolute failure to recover the input potential coefficients. The
difference between the input and estimated coefficients was about 100% for most
degrees, except for the second degree which was 30%. These differences translate to
RMS undulation difference of 40.4 m and RMS anomaly difference of 17.8 mgal.

The legitimate question arnises to explain the above outcome, assuming there are no
software errors. In order to test the possibility of software errors, the computer program
written by Sjoberg (1978), included in Prof. Rapp's program library as program F373,
was used. Program F373 estimates by means of collocation the potential coefficients to

degree and order 18 and their associated accuracies. A global set of mean gravity
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anomalies is given as input, which represent 10° equal area blocks in the system defined
by Hajela (1975). The auto-covariance matrix is derived by interpolating the tabulated
covariance function, in particular Pellinen's approximation, given by equation (2.2-34),
with Nmax = 200. First, the 10° equal area means were substituted by point values on a
10° equiangular grid. Then, the tabulated mean auto-covariance function was replaced by
the point auto-covariance function, and finally, the source code was changed to compute
the cross-covariances between the estimated potential coefficients and the point data.
After each one of these steps, a set of coefficients was estimated. It is clear that such
intermediate solutions are theoretically incorrect; nevertheless, they indicate the sensitivity
of the results with respect to these three components: the data, the auto-covariance and
the cross-covariance matrix. It was evident that the change in the cross-covariance matrix
drastically altered the estimated coefficients to the point that no recovery was obtained,
thus indicating that it has the strongest influence in the transition from point to mean data.

As 3 next step, the point data experiments were abandoned and mean data
experiments were performed. The first tests were set up in correspondence to the point
data test, thius area means of 10° equiangular blocks of gravity anomaly and undulation
with maximum degree of expansion 18 were used. The auto and cross-covariance
matrices were computed accordingly as explained in section 4.2, with maximum degree
of truncation in the auto-covariance function of 180. The results of these two
experiments are tabulated in tables 5 and 6 for the Ag and N data respectively. In the
same tables the results of two other experiments are shown, where the mean auto-
covariance matrices have been substituted by the point ones. Although this configuration
is not recommended due to the inconsistencies involved, they are presented here in
support of two arguments; first, the strong influence of the cross-covariance matrix when
converting from point to mean data, as observed with tests using Sjoberg's software, and
second, the distinguishable behavior between the anomaly and undulation data and their
covariance functions with regard to the recovery of the input coefficients. In this case the
point covariance may be viewed as another approximation of the mean covariance
function implemented here.

Note that in the tables presenting the recovery, the term "overall" pertains to the
average of the percentage difference (from equation (4.1-8)) and the RMS value for the
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undulation difference (from equation (4.1-10)) and the anomaly difference (from equation

(4.1-12)). Also, the recovery of the degree 17 is given, since the Nyquist frequency,

Nq=18, of the experiments cannot be resolved completely, as explained in section 3.1, p.

60. This fact is manifested by the non-recovery of the Ng frequency zonal, i.e. Cy3,

while all other order coefficients within this degree are recovered with some accuracy.

Table 5. Recovery for 10° Ag data, with mean cross-covariance matrices and point and
mean auto-covariance matrices with Nmax = 180

Degree| Percent difference | Undulation difference (m)| Anomaly difference (mgals).
~point mean point mean point mean
2 3261 [ 0.58 5.840 0.103 0.90 0.02
3 11.29 | 2.20 2.135 0.416 0.66 0.13
4 23.56 1.71 2273 0.165 1.05 0.08
5 27.11 1.75 2.007 0.130 1.23 0.08
6 36.82 3.76 2.102 0.215 1.62 0.17
12 82.77 | 18.07 0.938 0.205 1.59 0.35
17 93.49 | 41.87 0.639 0.286 1.57 0.70
18 92.51 | 36.25 0.648 0.254 1.69 0.66
overall | 60.49 | 13.79 8.270 0.896 6.53 1.47
Table 6. Recovery for 10° N data, with mean cross-covariance matrices and point and
mean auto-covariance matrices, with Nmax = 180.
Degree| Percent difference | Undulation difference (m)| Anomaly difference (mgals).
point mean point mean point mean
2 32.61 | 58.55 4.150 X 0.64 1.61
3 45.60 |363.83 8.640 X 2.66 21.17
4 16.01 | 24.44 1.546 2.359 0.71 1.09
5 26.82 | 86.10 1.986 6.375 1.22 3.92
6 18.28 | 17.78 1.044 1.015 0.80 0.78
12 33.82 9.93 0.383 0.113 0.65 0.19
17 77.08 | 45.47 0.527 0.311 1.30 0.77
18 69.22 | 29.25 0.485 0.205 1.27 0.54
overall| 37.74 1 4921 [10.175 70.018 4.62 21.80

-
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Itis seen in table S, that the Ag set-up gives a recovery of the input field, which is 30% to
40% better for the low degrees (i.e. for n = 2 to 6), than for the higher degrees (i.e. n=16
to 18). As expected, in this case the point auto-covariance approximation is not a
desirable one, due to resulting 60% average difference. On the other hand, the undulation
data recovery is overall very poor, especially for the low degrees, while the degree 3 is
non-recoverable at all. The degrees between 10 and 14 are recovered somewhat better
than with the Ag data. Noticable improvement is seen for the case of the point auto-
covariance function, especially for the degree 3. This is in agreement with the discussion
in section 3.1, identifying the instability problem arising from the low frequency
undulation covarnance function.

The other important issue addressed in this section is the one of the appropriate
degree of truncation in the auto-covariance functions, which is discussed in principle in
section 3.1. Theoretically the summation should be carried out to infinity, with the higher
frequencies damped, according to the block size. Colombo's tests (1981, pp. 85-90)
have already been summarized in section 3.1. He reported that the approximation used
here (equation (2.2-34)) is inadequate for blocks near the poles, as compared to a more
rigorous covariance computation by means of numerical quadratures. Such behavior of
the covariance function would not be anticipated, since it only depends on the block size
and generally improves for finer grids, as is the case near the poles. Also, the
covariances computed for this work do not show such discrepancies. Tables 7 and 8
present these covariances between 5° blocks for equatorial and polar rows respectively.
These covariance values show similar agreement between the Pellinen approximation and
the numerical quadrature computation (columns 1 and 3) for both equatorial and polar
rows, which indicates that Colombo's computations for the polar rows with 100%
discrepancy (column 2, Table 8) are not reliable. Note that the ¢, values used by
Colombo were derived from the "2L" model of Jekeli (1978), which probably accounts
for the differences between Colombo's and present computations for the equatorial rows
(columns 2 and 3, Table 7).
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Table 7. Mean auto-covariance comparison of 5° Ag data, reported by Colombo (1981)
and present calculations, Nmax = 180, latitudinal row between 0° and 5° N.

Block No. Numerical/Colombo | Pellinen/Colombo | Pellinen/Present
1 253.8 251.8 2193
2 149.5 151.0 152.2
3 93.9 939 104.6
4 57.1 57.1 61.4
5 31.7 31.7 29.6
6 13.9 13.9 7.6
12 -18.1 -18.1 -14.1
24 9.1 9.1 10.4
36 -13.7 -13.6 -21.3

Table 8. Mean auto-covariance comparison of 5° Ag data, reported by Colombo (1981)
and present calculations, Nmax = 180, latitudinal row between 80° and 85° N.

Block No. | Numerical/Colombo | Pellinen/Colombo Pellinen/Present
1 4372 ~835.5 361.4
2 318.3 800.1 334.4
3 229.2 709.0 274.3
4 196.4 592.2 220.9
36 58.0 149.4 61.1

In this study the overall recovery was used as the criterion to judge the sufficient
degree, Nmax, of the truncation in the summation of the covariance function (equations
(2.2-34) 10 (2.2-36)). Tests for Ag and N were made for Nmax = 360 and a test for
Nmax = 3000 was performed for N data only, since the N type of tests displayed
instability with regard to the covariance functions used. The input potential coefficient set
being complete to degree 360, the adoption of ¢, model was necessary to compute the
remaining ¢y, values to degree 3000. In particular, the Tscherning-Rapp model (1974)
was used, defined from:

A(n-1)

(4.3-1)
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where A =425.28 and B = 24. The recovery obtained for the Ag data is identical with
the one showed in table S, thus proving the summation of the covariance function to
Nmax = 180 satisfactory. Table 9 contains the results for the N tests, where the symbol
# indicates that the value is the same as the one for Nmax = 360 in the preceeding
column.

Table 9. Recovery for 10° N data, mean covariance matrices and truncation at Nmax=360

and 3000.
Degree| Percent difference | Undulation difference (m) |[Anomaly difference (mgals)
360 3000 360 3000 360 3000
2 60.95 | 60.97 X # 1.68 #
3 |357.09 |357.05 x # 20.78 #
4 24.96 # 2.409 # 1.11 #
5 81.14 81.13 6.230 6.229 3.83 #
6 17.86 # 1.020 # 0.78 #
12 9.95 # 0.113 # 0.19 #
17 45.50 # 0.311 # 0.77 #
18 29.25 # 0.205 # 0.54 #
overall | 48.81 # 68.818 68.810| 21.41 #

By comparing table 6 with table 9 it may be seen that there is a small improvement going
from Nmax = 180 to 360, but there is no difference for Nmax = 3000, which increases
tremendously the computation time. In all cases the recovery remains very poor, thus
making the small difference completely trivial.

4.4 Data error consideration and regularization effects.

The procedure for incorporating error in the simulated data is presented in section
4.2. According to this algorithm the value of the variance, 62, of the white noise (0, 62)
included in the data must be assigned. The appropriate ¢ is found by means of the
accuracy estimates of the input potential coefficients. As explained in section 1.2, the
estimated accuracies of the coefficient set OSU86D, described by Rapp and Cruz
(1986a), may be used for the OSUSGF field to degree 250. Using program

F184.JAN26, the error degree variances in gravity anomaly, m? (Ag), and undulation m3

o
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(N), are computed from the estimated errors m¢,,, and mg,, of the coefficients Cnm and
Snm respectively:

2 2n n
mylag)=v P[] X (md e ml).
m=0 (4.4-1)

mi(N) = Ré i (mi_-&- mf_)

m=0

(4.4-2)

Then, the cumulative estimated error to degree Nmax for these two quantities is given
from:

(4.4-3)
N w

. ‘max

ON= i[ Z mz(N)jl
n=2 (4.4-4)

The following table shows the values of both anomaly and undulation standard deviations

for Nmax = 18, 36, ., and 90, which correspond to the expansions estimated in this
work.

Table 10. Anomaly and undulation standard deviations to degree Nmax, derived from
the estimated accuracy of the OSU86D.

Nmax 18 36 60 90
Cag (mgals) | 1.15 2.24 3.20 4.61
ON (meters) | 0.62 0.79 0.85 0.90
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When error is included in the simulated observations, the associated variance is taken into
account in the error covariance matrix designated by Cpp or D in equations (2.2-11) to
(2.2-14). In order to maintain the block-Toeplitz structure of the covariance matrix for
each data group, the related D matrix is assumed diagonal with the additional assumption
of the same error among observations within the same parallel. For the computations
described here, the same variances 6Azg and 8%; were assigned to all gravity anomaly and
undulation observations respectively. The individual experiments where data error was
included pertain to 18 and 36 degree expansion estimations and they are described below.

The first test utilized point anomaly data, despite the unacceptable results obtained to
this point (Section 4.3). The incentive for this was the fundamental difference in
truncating the degree of summation in the point and the mean covariance functions.
When calculating the mean function, with Nmax = 180, the Pellinen operators smooth out
the higher frequencies according to the data block size. However, when calculating the
point function with the same Nmax (i.e. 180) for 10° point data (with frequency content
to degree 18), additional frequencies in the range 18 to 180 are introduced in the data
covariances, while not present in the data. By including error in the data, a positive
definite error covariance matrix, D, is added to the data covariance matrix, thus making
the matrix inversion possible even for low degree (eg. 18) truncation of the covariance
function. Using 10° point Ag data with maximum degree of expansion 18, the same (i.e.
18) maximum degree in the covariance function summation and G=t1.15 mgals, the

results showed no recovery, as before.

The point data configuration was abandoned once again, and the next tests were
made with mean gravity anomaly and mean undulation data computed from an expansion
to degree 18. The auto-covariance matrices were computed with input parameters Nmax
= 180, 8ag = 1.15 mgals and 3N =+ 0.62m accordingly. Although the adopted
values of 3agand 3N, as shown in Table 10, pertain to the error associated with point
quantities, they are used in the present analysis as rough estimates of the data error in the
mean anomaly and mean undulation observations. The results obtained for the potential
coefficient recovery are presented in Tables 11 and 12.
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Table 11.  Recovery for 10° Ag data with error, mean covariance matrices and

Nmax=180.

De Correlation | Percent difference] Undul. diff. (m) | Anomaly diff. (mgals)
gmc 0.9983 5.95 1.065 0.16
3 0.9990 4.90 0.926 0.28
4 0.9987 5.29 0.511 0.24
5 0.9991 4.37 0.323 0.20
6 0.9994 3.52 0.201 0.15
12 0.9821 2498 0.283 0.48
17 0.9286 46.39 0.317 0.78
18 0.9391 43.38 0.304 0.79
overall 0.9833 17.36 1.810 1.85

The effect of data error in this case may be seen by comparing the results of tables 5 and
11. The error in the estimated coefficients of second degree increases from 0.58% to
5.95% when data error is included. It is seen that the error increase is smaller for higher
degree coefficients, while the coefficients near the Nyquist frequency are recovcered with
an error of about 40%. The average error increase to degree 18 is about 30% for using
data with error. This figure corresponds to increase of the RMS undulation difference by
102% and increase of the RMS anomaly difference by 26%.

Table 12. Recovery for 10° N data with error, mean covariance matrices and Nmax=180.

Degree orrelation Percent ditference | Undul. diff. (m) [ Anomaly diff. (mgals)
2 0.9699 24.42 4.373 0.67
3 0.9743 53.79 X 3.13
4 0.9899 19.65 1.896 0.87
5 0.9722 29.66 2.196 1.35
6 0.9828 18.48 1.055 0.81
12 0.9738 22.80 0.258 0.44
17 0.7074 72.47 0.496 1.22
18 0.7907 63.04 0.442 1.15
overall 0.9345 33.94 11.659 4.69

A drastic improvement is apparent between the results of Table 12 and the corresponding
errorless case shown in Table 6, especially for degrees 2 and 3, which amounts to a
decrease in RMS undulation difference by 85%. This result provided more evidence of
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the instability of the data solutions and the regularization procedure was considered as
the most justifiable next step. The fundamental theory of the regularization is briefly
described in section 3.2 including formula (3.2-13) which is implemented here. As
already mentioned the error covariance matrix, D, is assumed diagonal in all experiments
presented here. Therefore, the term aD in equation (3.2-13) may be written as a 62,
where I is the unit matrix. In all undulation error covariance matrices from this point on,
the value 62=9m? is used. For the case of 10° N data, the corresponding error
suggested in Table 10 is on = +0.62m, thus defining the value of & to be about 23.
Tables 13 and 14 contain the results for the potential coefficient recovery, obtained from
two experiments with 10° N data and regularized auto-covariance matrices by a factor
0=23. In the first experiment the noise (0, on2) is included in the simulated data (table
13), while in the second one (table 14), errorless data are used.

Table 13.  Recovery for 10° N data with error, mean covariance matrices with
Nmax=180 and regularization of o = 23.

Degree | Correlanon | Percent difference] Undul. diff. (m) [ Anomaly diff. (mgals)
2 0.9795 20.18 3.614 0.56
3 0.9820 45.11 8.535 2.63
4 0.9941 14.79 1.427 0.66
5 0.9784 24.50 1.814 1.12
6 0.9925 12.34 0.704 0.54
12 0.9809 35.44 0.402 0.68
17 0.7293 80.41 0.550 1.35
18 0.8735 76.81 0.538 1.41
overall 0.9549 35.73 9.744 441

The comparison of Table 13 to Table 12 shows improvement in the recovery of the low
degree coefficients, but poorer recovery of the coefficients of the second half of the
estimated spectrum. Thus, the average percent difference changes from 34% to 36%
when regularization is applied. On the other hand, the RMS undulation difference is
decreased by 16% and the RMS anomaly difference is decreased by 6%.
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Table 14.  Recovery for 10°N errorless data, mean covariance matrices with
Nmax=180 and variance ad&=9m?

Degree Correlaton | Percent difference] Undul. diff. (m) | Anomaly diff. (mgals)
2 0.9758 21.91 3.925 0.60
3 0.9835 42.87 8.112 2.49
4 0.9930 16.15 1.559 0.72
5 0.9807 23.85 1.766 1.09
6 0.9898 14.29 0.816 0.63
12 0.9934 32.50 0.368 0.62
17 0.7687 80.13 0.548 1.35
18 0.9258 73.95 0.518 1.35
overall 0.9632 35.44 9.517 4.32

The overall improvement in the recovery when neglecting the error in the simulated data,
while already including the regularized error covariance matrix is generally small, of the
order of 3%. However, a comparison on a per-degree basis of the numbers shown in
Tables 13 and 14 shows that the improvement of the overall recovery does not mean
improvement in individual degree recovery.

Before presenting the tests for various regularization parameter values, the tests
including data error in 36 degree expansion estimation are presented. Specifically, mean
anomaly and mean undulation data referring to 5° blocks were derived with maximum
degree 36. Both, anomaly and undulation, auto-covariance matrices were singular due to
decreased data spacing. To enable the inversion of the covariance matrix the value of 3
mgals2 was added to the diagonal elements in the case of Ag data, and the value of 9m? in
the case of N data. Then, the noise added to the Ag simulated observations is distributed
as (0, 1.732) and the noise added to the N simulated observations is destributed as (0,
0.792), which implies a regularization factor of a = 14. In the following, Tables 15 and
16 show the results of the Ag data tests with data error and without data error
respectively. However, the same error covariance matrix is included in both cases.
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Table 15.  Recovery for 5° Ag data with error, mean covanancc matrices with
Nmax=180 and variance aag? = 3 mgalsZ.
De Correiation | Percent differencel Undul. diff. (m) | Anomaly diff. (mgals)
§ 0.9998 3.05 0.547 0.08
3 0.9998 2.33 0.441 0.14
4 0.9995 3.24 0.313 0.14
5 0.9994 3.58 0.265 0.16
6 0.9995 3.65 0.209 0.16
12 0.9933 12.67 0.144 0.24
18 0.9874 17.28 0.121 0.32
24 0.9652 33.38 0.130 0.46
36 0.9087 50.91 0.152 0.82
overall 0.9786 21.26 1.107 _ 2.47
Table 16.  Recovery for 5° Ag errorless data mean covanance matrices with
Nmax=180 and variance aBag? = 3 mgals2.
Degree | Correlation | Percent difference] Undul. diff, (m) | Anomaly diff. (mgals)
7Em 1.0000 0.32 0.057 0.01
3 1.0000 0.51 0.097 0.03
4 1.0000 0.43 0.041 0.02
5 1.0000 0.57 0.042 0.03
6 1.0000 1.09 0.062 0.05
12 0.9996 6.33 0.072 0.12
18 0.9975 10.92 0.076 0.20
24 0.9939 24.44 0.095 0.34
30 0.9434 47.61 0.142 0.77
overall 0.9929 16.96 0.542 2.10

Including data error increased the error of the estimated coefficients, as is seen by

comparing the results of Tables 15 and 16. Especially, the recovery of the low degrees is

mostly affected, for example the error of estimating the second degree coefficients
increased from 0.32% to 3.05%. In the overall sense, the average error to degree 36
increased by 25%, while the RMS undulation difference increased by 104% when error is
included, thus reflecting the large impact on the low degree coefficient recovery.

However, the increase in RMS anomaly difference is about 18%. It may be pointed out

that the effect of the data error is generally smaller than the same effect for the 10° Ag

data, presented earlier in this section. The corresponding results for 5° N data with and
without errror are presented in Tables 17 and 18 respectively.
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Table 17.  Recovery for 5° N data with error, mean covariance matrices with
Nmax=180 and variance aon2=9 m?
De Correlation | Percent difference] Undul. diff. (m) | Anomaly diff. (mgals)
0.9847 17.31 - 3.137 0.48
3 0.9912 24.86 4.703 1.45
4 0.9948 12.49 1.206 0.56
S 0.9934 11.90 0.881 0.54
6 0.9956 9.36 0.535 0.41
12 0.9967 11.21 0.127 0.22
18 0.9895 30.85 0.216 0.57
24 0.9175 71.33 0.278 0.98
36 0.7475 89.05 0.267 1.43
overall 0.0346 43352 6.034 5.37
Table 18.  Recovery for 5° N errorless data, mean covariance matrices with
Nmax=180 and variance adn2=9 m2.
De Correlation | Percent difference]l Undul. diff. (m) [ Anomaly diff. (mgals)
% ) 13.87 ~2.842 0.44
3 0.9906 23.55 4.455 1.37
4 0.9957 11.48 1.108 0.51
5 0.9936 11.69 0.866 0.53
6 0.9903 8.60 0.491 0.38
12 0.9995 8.44 0.096 0.16
18 0.9965 29.21 0.205 0.54
24 0.9761 67.92 0.264 0.93
36 0.8999 88.34 0.264 1.42
overall 09710 43.37 ~35.632 5.28

Table 18 shows better recovery for errorless data as compared to Table 17. In particular,

the error of the second degree coefficients increases by 10%, while the average error to

degree 36 increases by 3%. Note that the large influence on the low degree recovery
observed in the Ag tests is not observed here, due to the large regularization factors. The
RMS undulation difference increased by 7% while the RMS anomaly difference increased
by 2%. These figures show an error influence of the same order of magnitude as the 10°
N tests, presented in Tables 13 and 14.




95

Finally seven regularized solutions for N errorless data are presented for various
regularization factors. Since generally the solutions improve for the lower degrees but
deteriorate for the higher frequencies, they are compared with each other in terms of
overall recovery to various degrees, in particular 4, 9 and 18. These statistics are given in
Tables 19 and 20, together with the recovery measures for degree 2. Note, that for the
computation of the covariance matrices the covariance function was truncated at
Nmax=360. According to the tests presented in section 4.3, the results would be
identical if the value of Nmax = 180 were used instead.

Table 19. RMS undulation differences (in meters) for 10° N errorless data and mean
covariance matrices (Nmax = 360) from various regularized solutions.
Variance = o 6%

variance (m?)] n=2 | n=2w04 | n=2109 | n=21018

4 4.124 10.887 11.172 11.222

9 3.962 9.358 9.634 9.724

20 3.582 7.741 7.982 8.174

50 2.951 6.025 6.268 6.669

100 2.344 4.734 5.119 5.776

300 1.413 2.980 4.375 5.425
600 1.031 2.285 4.982 6.05

Table 20. RMS anomaly differences (in mgals) for 10° N errorless data and mean
covariance matrices (Nmax = 360) from various regularized solutions.
Variance = a K.

variance(m?)| n=2 [n=2104 [n=2109]| n=2t018

4 0.63 3.21 371 4.37

9 0.61 2.73 3.22 4.30

20 0.55 2.23 2.69 4.54

50 0.45 1.72 2.28 5.04

100 0.36 1.34 2.33 5.58

300 0.22 0.86 3.36 6.70
600 0.16 0.73 4.39 7.51

The results in Tables 19 and 20 show a continuing improvement in the recovery of
degree 2 for increasing variance values. In fact, the RMS undulation difference is
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decreased by 75% between variance = 8%; =4 and variance = o 5‘% = 600. However,
the recovery of the higher degrees of the estimated expansion deteriorates when the
variances increases. This is seen more clearly by observing the overall RMS anomaly
difference which increases for larger variances. Such results are to be anticipated in
applying a regularization procedure, especially for large regularization factors as in the
presented experiments where the value of a varies from 10 to 1.5 x 103.

4.5 Recovery in relation to the grid size.

The sets of spherical harmonic potential coefficients estimated from various grid size
data are analyzed in this section. All solutions are regularized except for the one obtained
from 10° mean anomaly data to degree 18. The same value was added to the diagonal of
the auto-covarianice matrix for each data type, regardless of the block size. In particular,
the value of 3 mgals? was used to regularize the Ag solutions which, according to the
standard deviations given in table 10, would actually correspond to underscaling the
variance of the data. To the contrary, the results shown in tables 19 and 20 suggest large
regularization factors in the case of N data. The value of 9m2 was used in all the
solutions with N data, which corresponds to regularization parameters, , in the range
from 10 to 23.

The data, consisting of Ag and N values, were computed on regular grids of size
10°, 5°, 3° and 2° with maximum degrees of expansion of 18, 36, 60 and 90 respectively.
The auio-covariance matrices were derived with the mean covariance function summed to
Nmax = 180. Among the recovery statistics, the percent difference and the correlation
per degree are shown in figures 14 to 17 and figures 18 to 21 for all four solutions
derived from Ag data. Similarly, the results obtained from N data are shown in figures
2210 29.
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Figure 14. Percent difference per degree between the input coefficients and the
coefficients recovered from 10° Ag errorless data to degree 18.
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Figure 15. Percent difference per degree between the input coefficients and the
coefficients recovered from 5° Ag errorless data to degree 36.




98

20.0 30.0 40.0 50.0

-l.ullll“”IHI
12

2
HARMONIC DEGREE

Figure 16. Percent difference per degree between the input coefficients and the
coefficients recovered from 3° Ag errorless data to degree 60.
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Figure 17. Percent difference per degree between the input coefficients and the
coefficients recovered from 2° Ag errorless data to degree 90.
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Figure 18. Correlation per degree between the input coefficients and the coefficients
recovered from 10° Ag errorless data to degree 18.
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Figure 19. Correlation per degree between the input coefficients and the coefficients
recovered from 5° Ag errorless data to degree 36.
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Figure 20. Correlation per degree between the input coefficients and the coefficients
recovered from 3° Ag errorless data to degree 60.
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Figure 21. Correlation per degree between the input coefficients and the coefficients
recovered from 2° Ag errorless data to degree 90.
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Figure 22. Percent difference per degree between the input coefficients and the
coefficients recovered from 10° N errorless data to degree 18.

20.0
1

PERCENT DIFFERENCE

|lUII|HJ}I'|| |H UL

0 4 32 N0

HRRMONIC DEGREE

Figure 23. Percent difference per degree between the input coefficients and the
coefficients recovered from 5° N errorless data to degree 36.
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Figure 24. Percent difference per degree between the input coefficients and the
coefficients recovered from 3° N errorless data to degree 60.
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Figure 25. Percent difference per degree between the input coefficients and the
coefficients recovered from 2° N errorless data to degree 90.
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Figure 26. Correlation per degree between the input coefficients and the coefficients
recovered from 10° N errorless data to degree 18.
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Figure 28. Correlation per degree between the input coefficients and the coefficients
recovered from 3° N errorless data to degree 60.
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Figure 29. Correlation per degree between the input coefficients and the coefficients
recovered from 2° N errorless data to degree 90.
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Several observations may be made from examining figures 14 to 29: (1) the lower
degrees in any estimated set of coefficients are recovered better than the higher degrees
within the same expansion, (2) the recovery of the input coefficients improves with
decreasing grid size for both data types and (3) the recovery obtained from the Ag data is
better than the one obtained from N data.

Average recovery statistics are presented to degrees 18, 36, 60 and 90. These
include average correlation, average percent difference, RMS undulation difference and
RMS anomaly difference as defined in section 4.1. Tables 21 to 24 contain these
statistics for the Ag solutions, and tables 25 to 28 the corresponding results for the N
solutions.

Table 21. Average correlation to various degrees, Nmax, between the input coefficients
and the coefficients recovered from Ag errorless data given on various grids.

block
ize 10° 5° 3° 2°
Nmax
18 0.9918 0.9994 | 0.9999 1.0000
36 0.9929 0.9993 0.9999
60 0.9939 0.9994
90 0.9947

Table 22. Average percent difference to various degrees, Nmax, between the input
coefficients and the coefficients recovered from Ag errorless data given on

various grids.
block
size 10° 5° 3° 2°
Nmax
18 13.79 4.40 1.77 0.73
36 16.96 5.60 2.06
60 14.26 4.63
90 11.82
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Table 23. RMS undulation difference (in meters) to various degrees, Nmax, between the
input coefficients and the coefficients recovered from Ag errorless data on

various grids.
block
size 10° 5° 3° 2°
Nmax
18 0.896 0.277 0.121 0.071
36 0.542 0.192 0.089
60 0.355 0.129
90 0.235

Table 24. RMS anomaly difference (in mgals) to various degrees, Nmax, between the
input coefficients and the coefficients recovered from Ag errorless data on
various grids.

block
ize 10° 5° 3° 2°
Nmax
18 1.47 0.47 0.19 0.08
36 2.10 0.67 0.24
60 2.42 0.76
90 2.48

Table 25. Average correlation to various degrees, Nmax, between the input coefficients
and the coefficients recovered from N errorless data given on various grids.
block
ize 10° 5° 3° 2°
Nmax
18 0.9632 0.9963 0.9991 0.9994
36 0.9710 0.9946 0.9985
60 0.9702 0.9910
90 0.9630
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Average percent difference to various degrees, Nmax, between the input
coefficients and the coefficients recovered from N errorless data given on
various grids.

block
1ze 10° 5° 3° 2°
Nmax
18 35.44 14.46 6.62 4.18
36 43.37 26.28 15.47
60 49.53 35.59
90 54.20

Table 27. RMS undulation difference (in meters) to various degrees, Nmax, between the
input coefficients and the coefficients recovered from N errorless data given
on various grids.

block
size 10° 5° 3° 2°
Nmax
18 9.517 5.533 2.940 2.450
36 5.652 3.028 2.486
60 3.171 2.590
90 2.683

Table 28. RMS anomaly difference (in mgals) to various degrees, Nmax, between the
input coefficients and the coefficients recovered from N errorless data given
on various grids.

block
ize 10° 5° 3° 2°
| Nmax
18 4.32 2.03 1.06 0.83
36 5.28 3.35 2.06
60 7.63 5.77
90 9.83

The general trend indicated by the numbers in tables 21 to 28 may be pointed out.
First, for both data types, there is an improvement in the recovery of the potential
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coefficients with denser data. For example, the improvement in average percent
difference up to degree 18 is 87% and in RMS undulation difference is 86%, when
decreasing from 10° to 3° blocks of Ag data. The corresponding figures for N data are
81% and 70%. In decreasing from 10° to 2° blocks these numbers improve to 95% and
92% for the Ag data and, 88% and 75% for the N data.

It is also apparent that superior results are obtained using Ag data than when using N
data. From the statistics in the preceeding paragraph the improvement with decrease in
grid size is also superior for the Ag data. Consider the percent difference between the
recovered and the input coefficients shown in tables 22 and 26 for Ag and N data
respectively. The differences between columns 4 of these two tables are 3.45, 13.41,
30.96 and 54.20 for corresponding Nmax values of 18, 36, 60 and 90. Thus, the
difference in the recovery statistics between the two data types increases with degree,
especially for degrees larger than 36, as the two last differences indicate. Also, figures
28 and 29 show that the percent differences for N data are more than 40% for degrees
higher than 36.

In addition to the coefficients their accuracy is estimated by means of the equation
(2.2-14) for the expansions to degrees 18 and 36. Due to the large size of the auto-
covariance matrices for the case of 3° and 2° mean data (actually 7,200 and 16,200
observations respectively) as well as due to the time consuming computation required, the
accuracy estimates of these expansions have not been computed.

Negative variances were computed for certain coefficients which generally suggest
that the covariances used are not optimal in the sense of representing the true covariances.
In particular, the variances estimated from 10° Ag data for the coefficients C3g, C3; and
S3; are -1.8 x 10-14, -6.9 x 10-15 and -6.9 x 10-15 respectively. These values are
practically zero, since the internal representation of the double-precision numbers retains
15 significant digits. No negative variances were calculated in esimating the 36 degree
field from the 5° Ag data. However, several negative variances were calculated from the
N data, especially for the low degrees, which indicate inadequacy of the covariance
function used for the undulation data. Tables 29 and 30 show the particular coefficients
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with negative estimated variances as well as the extremes of these variance values. The

symbol "#" means the same variance with the one of the Cpry coefficient.

Table 29. Extreme values of negative variances and all related coefficients, derived from
10° N errorless data.

Order Largest Vanance Smallest Vanance
Degree| Chm Snm Cnm Snm Cnm Snm
2 0t2 | 1,2 -0.9x10-11 | -0.3x10-12 | -0.3x10-13 -0.3x10-13
3 0to3 | 1to3 {-0.1x10-10 | -0.3x10-11 | -0.3x10-14 -0.3x10-14
4 Otod4 | 1tod |[-0.2x10-12 | -0.5x10-13 | -0.3x10-17 -0.3x10-17
5 Otod4 | 104 |[-09x10-13 | -0.2x10-13 | -0.3x10°15 -0.3x10-15
6 OtoS | 1toS |-0.1x10-13 | -0.6x10-14 | -0.1x10-15 -0.1x10-15
7 0to6 | 106 |[-0.3x10-14 | -0.3x10-14 | -0.9x10-16 -0.9x10-16
8 |1t03, S5to7|1t03,5t07| -0.2x10-15 | -0.2x10-15 | -0.2x10-16 -0.2x10-16
9 |23.6,7,8{23.6.7,8]-0.4x10-}'5 | -0.4x10-15 | -0.1x10-16 -0.1x10-16
10 2,6,7 | 2,6,7 |-02x1015 | -0.2x10°15 | -0.2x10-16 -0.2x10-16

Table 30. Extreme values of negative variances and all related coefficients derived from
5° N errorless data.

Order Largest Vanance Smallest Vanance
Degree{ Cim Snm Chm nm Cnm nm
2 Otw2 | 1,2 -1.9x10-13 # -1.6x10-13 #
3 Oto2 | 1,2 -3.3x10-13 # -9.1x10-14 #
4 1,2 1,2 -2.9x10-14 # -1.3x10-15 #
5 1,2 1,2 -1.1x10-14 # -7.2x10-16 #
6 1,2 1,2 -4.6x10°15 # -3.1x10-16 #
7 1,2 1,2 -2.3x10-13 # -1.7x10-16 #
8 1 1 -2.7x10°16 # N/A N/A
9 1 1 -9.4x10-17 # N/A N/A

The last recovery statistics, i.e. the differences between the recovered and the input
coefficients, were computed and normalized by the estimated standard deviations of the
particular coefficients (see equations (4.1-13) and (4.1-14)). Then the RMS value of the
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normalized differences was computed for each degree (from equation (4.1-15)) and was
plotted together with the extremes of the absolute values of the normalized differences
within the particular degree. These plots are presented for the variances of the
cocfficients derived from 10° and 5° Ag data in figures 30 and 31. Also, figures 32 and
33 show these results derived from 10° and 5° N data. Note that the negative variances

have been set to zero and the corresponding coefficient differences have not been included
in the RMS computation.
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Figure 30. RMS and extreme absolute values of the normalized differences between the
input and the recovered coefficients from 10° Ag errorless data.
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Figure 31. RMS and extreme absolute values of the normalized differences be:ween the
input and the recovered coefficients from 5° Ag errorless data.

J

1 | [Max =5.7

3.5 4.0

3.0

!

1

1. 2.0 2.5
1

1.0
|

s
.
&
ag

NORMAL 'ZED DIFFERENCE

-0.0 0.5

J 4 | i | .

o
=

16 20

e 12
HARMONIC DEGREE

Figure 32. RMS and extreme absolute values of the normalized differences between the
input and the recovered coefficients from 10° N errorless data.
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Figure 33. RMS and extreme absolute values of the normalized differences between the
input and the recovered coefficients from 5° N errorless data.

From figures 30 and 31 it is seen that the RMS values are generally centered between
the extremes for each degree, and also they increase with increasing degree. The RMS
values as well as the ranges of the normalized differences are decreased for the degrees up
to 18 when using the 5° Ag data instead of 10° Ag data. However, the other end of the
spectrum (i.e. for 24 < n < 36) shows increased values compared to the differences for
12 <n < 18 in figure 30.

Figures 32 and 33 do not indicate as clear as figures 30 and 31 the trend of
increasing value with increasing degree, although the RMS values tend to stabilize for the
second half of the predicted specirum. Also, the differences referring to the predicted
coefficients from the N data are generally larger than the corresponding ones predicted
from the Ag data. Finally, it is clear that the RMS values of the normalized differences
are smaller than one, i.e. the overall differences of the predicted coefficients from the
reference ones are within the accuracy of the prediction. There are only three exceptions.
as it can be seen in figure 32, specifically, values between 1.5and 2.0 forn =35, 6 and 8.




Similar graphs have been produced for the experiments where data noise was
included, which were discussed in section 4.4. Since the solutions presented in this
section are regularized (i.e. with the error covariance matrix effectively added to the signal
covariance matrix), the estimated accuracy of the predicted signals remains identical to the
errorless data case, as it is clearly seen from equation (2.2-14). However, the estimated
coefficients themselves are affected by the data error, thus changing the values of the
normalized differences. The coefficient error normalized by the corresponding estimated
accuracy is shown per degree in Figures 34 and 35 for 5° Ag and N noisy darta
respectively.
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Figure 34. RMS and extreme absolute values of the normalized differences between the
input and the recovered coefficients from 5° Ag data with noise.
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Figure 35. RMS and extreme absolute values of the normalized differences between the
input and the recovered coefficients from 5° N data with noise.

By comparing Figure 34 1o Figure 31 it is seen that only the first half of the predicted
spectrum is affected by the data noise, thus bringing the normalized differences to the
same order of magnitude for all degrees, about 0.5. Such effect is not observed for the N
data. The comparison of Figure 35 to Figure 33 shows only slight changes in the low
degrees. For the other degrees there are only small changes in the extreme values, while
the RMS values are unaffected.

4.6 Solutions combining data types.

So far, all the computations were made in order to analyze the behavior of the two
data types individually in estimating spherical harmonic coefficients with collocation.
This section presents experiments made with combined data types, namely mean gravity
anomalies and mean undulations.
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Two different tests were made to estimate potential coefficients to degree 18 and 36,
using mean data given on 10° and 5° regular grids, respectively. The 10° data were
derived from the OSU86F expansion to maximum degree 18, and the 5° data were
derived from the same expansion to degree 36. The auto-covariance matrices were
computed by summing the covariance function to Nmax = 180. The value of 9m?2 was
added to the diagonal elements of the undulation auto-covariance matrices and the value of
3 mgals3 was added to the anomaly covariance matrix of 5° block data only, in order to
perform experiments comparable to the ones presented in section 4.5.

Five data groups were included in each experiment. The first group is a global Ag
data set, as used in the experiments presented previously in section 4.5. The other four
data groups contain N data and cover the following geographic areas:

(1) -10° S <@ <40° N and 140° E < A < 240° E, which includes 5 rows of parallels and
10 zones of meridians on a 10° regular grid,

(2) 0° <S¢ <60°N and 300° E < A < 350° E, which includes 6 rows of parallels and 5
zones of meridians,

(3) -70° S < ¢ <-30° S and 0° < A < 120° E, which includes 4 rows of parallels and 12
zones of meridians, and

(4) -60° S < <-10° S and 180° E < A £290° E, which includes 5 rows of parallels and
11 zones of mendians.

The data location is also shown on the map of figure 35.

When estimating potential coefficients to degree 18 from 10° grid data, the number of
observations contained in each group above is 50, 30, 48 and 55, for a total of 183
undulation observations. There are 648 anomaly observations, which constitute 78% of
the 831 total observations. In the case of 5° grid, the number of data is exactly doubled
by densifying the coverage at the same geographic locations.
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Figure 36. Undulation data coverage for the combination solutions.

Using the above data configuration, the coefficients were estimated by employing the
sequential type of algorithm which was described in section 3.3. The statistics of the
reéovcry of the reference potential coefficients resulting from these tests are presented in
the following figures and tables. Figures 37 and 38 show the percent differences per
degree for the recovery obtained from 10° and 5° data respectively, while figures 39 and
40 show the correlation per degree between the input coefficients and the ones obtained
from these tests.
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Figure 37. Percent difference per degree between the input coefficients and the
coefficients recovered from 10° Ag and N combined errorless data to degree 18.
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Figure 38. Percent difference per degree between the input coefficients and the
coefficients recovered from 5° Ag and N combined errorless data to degree 36.
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Figure 39. Correlation per degree between the input coefficients and the coefficients
recovered from 10° Ag and N combined errorless data to degree 18.
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Figure 40. Correlation per degree between the input coefficients and the coefficients
recovered from 5° Ag and N combined errorless data to degree 36.
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Figures 37 and 38 show the same general trend as figures 14 and 15 respectively, which
reflect recovery from Ag data alone. A more detailed comparison indicates that for
degrees: 2 <n < 6 the percent differences in the combination solution increase about 1%,
and for degrees: 11<n<15 decrease by 1%, while they are the same for the remaining
degrees. This may be interpreted as the influence of the incorporation of the N data on
the Ag obtained solution. Figures 39 and 40 compare in a similar way to figures 18 and
19.

Specific values of the computed statistics for selected degrees are presented in table
31 for the 18 degree solution and table 32 for the 36 degree solution. The overall
recovery to degrees 18 and 36 is given in table 33.

Table 31. Recovery statistics for 10° Ag and N combined errorless data.

Degree | Correlation | Percent difference | Undul. diff. (m) | Anomaly diff. (mgals)

1.0000 I.18 0.212 0.03

3 0.9997 3.34 0.631 0.19

4 0.9998 2.02 0.195 0.09

5 0.9998 2.06 0.153 0.09

6 0.9992 4.09 0.234 0.18
12 0.9956 17.51 0.198 0.34
18 0.9588 36.17 0.253 0.66

Table 32. Recovery statistics for 5° Ag and N combined errorless data.

Degree | Correlation | Percent difference | Undul. diff. (m) | Anomaly dift. (mgals)
2 1.0000 0.52 0.094 0.01
3 1.0000 0.84 0.160 0.05
4 1.0000 0.69 0.067 0.03
5 1.0000 0.51 0.038 0.02
6 0.9999 1.30 0.074 0.06
12 0.9996 5.64 0.064 0.11
18 0.9974 10.96 0.077 0.20
36 0.9435 47.47 0.142 0.76
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Table 33.  Overall recovery to degree Nmax obtained from Ag and N combined
erroriess data given on 10° and 5° regular grids.
Nmax | Gnd Average Average RMS undulation RMS anomaly
size Correlation % diff. diff. (m) diff. (mgals)
18 10° 0.9918 13.84 1.039 1.47
18 ¥ 0.9995 4.27 0.312 0.45
36 b 0.9929 16.73 0.557 2.08

By comparing the second row in table 33 with the corresponding statistics in tables 21 to
24 it is evident that all statistics are slightly better, except for the RMS undulation
difference, which is increased by 3.5 cm.

Finally, the estimated accuracy of the predicted coefficients was computed. Several
negative variances were found for the case of 10° data solution, in particular for degrees 2
1o 5 and various orders, as shown in table 34. A single negative value was computed for
the C39 coefficient estimated from 5° data, which was of the magnitude -4.7 x 10-15.

Table 34. Extreme values of negative variances and all related coefficients derived from
10° Ag and N combined errorless data

Order Largest Vanance Smallest Varniance
Degree] Cnm Snm Cnm Snm Chom Snm
2 0,2 2 -0.2x10°-13 | -0.5x10-14 | -0.6x10-14 N/A
3 0to3 | 1103 [-0.1x10-13 | -0.5x10-14 | -0.1x10-13 -0.3x10-14
4 3 3 -0.5x10-15 | -0.3x10-15 N/A N/A
5 4 4 -1.0x10-16 | .0.8x10-16 N/A N/A

In addition, the estimated standard deviations are used to normalize the difference of

the respective estimated coefficients from the reference ones, excluding the coefficients
given in table 34. The range of the absolute values of the normalized differences as well
as the RMS value for each degree is shown in figures 41 and 42.




J
—
to
—

3.5 4.0

1

]

3.0

i

|

2.0 2.5

.S

1
|
—

.0

|

{« } 1{ } I MM ............

12 16 20

8
HARMONIC DEGREE

Figure 41. RMS and extreme absolute values of the normalized differences between the
input and the recovered coefficients from 10° Ag and N combined errorless data.
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Figure 42. RMS and extreme absolute values of the normalized differences between the
input and the recovered coefficients from 5° Ag and N combined errorless data.
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The comparison of figures 41 and 42 with figures 30 and 31 shows larger RMS
values and larger extremes for the first half of the predicted spectrum in the combination
solutions, while the second half seems unaffected. On the other hand the comparison of
these figures with figures 32 and 33 shows the same general wend for the low degrees,
but with the extreme values supressed when combining data types.




CHAPTER V
CONCLUSIONS

Numerical solutions to the overdetermined geodetic boundary value problem have
been derived using the method of least-squares collocation. The boundary value problem
is defined by the Laplacian for the disturbing potential and the boundary conditions of the
first and third (or mixed) type holding on overlapping parts of the spherical boundary of
radius Rg. The solutions are expressed in terms of solid spherical harmonics, thus sets
of coefficients are obtained to the degree defined by the Nyquist frequency of the
boundary data. The boundary data are mean values referring to equiangular blocks on the
sphere R and they have been simulated using the OSU86F potential coefficient set. In
particular, mean gravity anomaly and mean undulation data were computed on regular
grids of 10° and 5° using expansions to degree 18 and 36 respectively. The equations
applied to estimate the coefficients and their accuracies are given in section 2.2, as well as
the equations used to compute the data covariances and the cross-covariance between the
estimated coefficients and the data. Specifically, for the computation of the data
covariances equations (2.2-34) to (2.2-36) are used, where the anomaly degree variances
are computed from the OSUS8GF coefficients and the summation is carried out to Nmax =
180. As a consequence of the implemented isotropic and homogeneous covariance
functions, the auto-covariance matrix of data given on a regular grid (defined by a number
of parallels and meridians) is identified as a block-Toeplitz matrix. Substantial savings in
computing effort are realized in forming and inverting such matrices. An algorithm is
implemented to exploit this pattern for the largest data group, while additional groups are
included in a sequential algorithm as described in section 3.3. Since only simulated data
are analyzed, the error of the solution is determined by means of the recovery of the
reference field. The errors of the estimated solutions to degree 18 and 36 increase with
degree, ranging from 0.5% to maximum of 10% for the first half of the estimated
spectrum and reach 40% near the Nyquist frequency.

To consider the influence of the two data types, a number of solutions were carried
out based exclusively on gravity anomaly data or undulation data. By comparing the
combination solutions with the corresponding one-data-type solutions, the former can be
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viewed as a weighted average of the latter. This averaging is done in an optimal way
under the least-squares collocation minimum principle, and the combination solutions
ultimately depend on the relative amounts of data as well as their distribution. In the case
that data error is included, it also affects the combination in a relative sense: the more
accurate data has greater influence on the combined solution. Similar effects happen due
to the regularization process. When large regularization factors are used, the data error is
effectively increased and the weight it carries on the solution is decreased. The solutions
presented in this work are obtained with a factor of 10 for scaling the undulation
variances. The anomaly variances are not scaled, thus the final result is influenced more
by the anomaly data, as discussed in section 4.6.

Since the result of data combination may be predicted based on solutions from
anomaly data and solutions from undulation data, several parameters of the system can be
analyzed with respect to the individual data types. This does not only simplify the
computations, but also provides a better insight into the behavior of the different data, and
some guidelines towards optimizing their combination.

Given the analytical form of a covariance function, the two fundamental properties of
positive definiteness and symmetry are required in order for it to represent a true
covariance function, and also in principle, a reproducing kernel in the Hilbert space where
the collocation solution is derived. For the functions implemented in this study the
positive definiteness is assured when the power spectrum, defined by the degree
variances kp, is positive for all n. As it is discussed in detail in section 3.1, truncation of
the covariance function summation at finite degree n results, theoretically in singular
covariance matrices. Numerical tests, presented in section 4.3, have shown that
truncation at Nmax = 180 is sufficient for data given on a 10° regular grid. Note that this
condition holds for point and mean covariance functions. The issue of using point vs
mean data has been addressed in section 4.3. However, meaningful solutions were
derived when using area mean values only. Point data on a 10° regular grid completely
failed to recover the input coefficients. Other than with regard to the covariance matrix
singularity, the value of Nmax was tested with regard to the recovery of the input
coefficients. The results shown in tables 5, 6 and 9 prove that the value of Nmax = 180
is sufficient, since there is no noticeable change for Nmax = 360 and 3000.
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After studying corresponding solutions obtained separately from global anomaly and
undulation data sets, several statements may be made about the existing differences and
similarities. First, the undulation point covariance function used is generally a low
frequency function with correlation length of about 22°, whereas the correlation length for
the anomaly point function is about 2°, as is seen in figures 3 and 2. These correlation
lengths increase for mean covariance functions, especially with decreasing grid size as
shown in figures 4 t0 9. As a result of the implemented global covariance function
characteristics, ill-conditioning appears in the auto-covariance matrices, which introduces
instabilities in the solutions. This type of effect occurs in both types of covariance
matrices, although more acutely in the undulation one, as a result of using data in polar
areas of an equiangular grid, where the blocksize decreases when approaching the poles.
For data given on a regular grid of size equal or smaller than 5°, singularity occurs in the
covariance matrix of both data types, as is indicated by their condition numbers given in
tables 1 and 2.

The singularity can be handled by adding the error covariance matrix, D = 62 ], to
the signal covariance matrix. In this case error may be included in the simulated
observations, in the manner explained in section 4.1, by adding pseudo-random numbers
distributed as Gaussian (0, 62). The effect of the data error is tested for mean data
referring to 10° and 5° equiangular blocks and it is discussed in section 4.4. When using
10° Ag noisy data, the average error of the estimated coefficients to degree 18 increased
by 30%, as opposed tc the errorless data. Especially, the error of the lower degrees is
mostly affected, as the results of Table 11 indicate. However, the results obtained from
10° N noisy data are not comparable (Table 12). In this case, a regularization method is
recommended, where the variance of each observation is scaled by a factor a>1.
Specifically, the variance of adf = 9m2 was added to the diagonal elements of the N
signal covariance matrix. Then, the recovery of the input coefficients was tested for
noisy as well as errorless simulated observations. Tables 13 and 14 show 3% increase of
the average error to degree 18, due to observation noise. The same increase was
observed in the average error to degree 36, derived from 5° N noisy data (Tables 17 and
18). The value of 3 mgals2 was used for the variance of 5° A_é data and was added to the
Ag signal covariance matrix. When including the equivalent noise in the observations the
average error to degree 36 increased by 25%, as the results in Tables 15 and 16 indicate.
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Tests made using undulation signals on a 10° regular grid, showed that the error of the
estimated low degree coefficients decreases with increasing regularization factors, as
presented in tables 19 and 20. Specifically, the coefficients of degree 2 are estimated with
an RMS error of 6% for a = 1.5 x 103, while for a = 10, this error is about 30%.
However, it is known that the regularization effectively decreases the data resolution, i.e.
increases the data error, thus the error in the estimated higher degrees increases rapidly
with the factor a. The errors corresponding to the two previous a values are 99% and
80% near the Nyquist frequency. An indication of the implemented undulation
covariance function being problematic, i.e. not approximating well the true covariance,
are the unrealistic error estimates obtained by the least-squares collocation formula; in this
case, negative variances are calculated for coefficients of degrees 2 to 10. These values
are practically zero and are given in tables 29 and 30. The data densification by
decreasing the grid size has a positive influence on the results. The improvement is well
manifested for both data types, and it is discussed in the comparative analysis of section
4.5, by analyzing the overall recovery statistics given in tables 21 to 28. For example,
the average percent difference to degree 18 is reduced by 95% for the anomaly soiutions
and 80% for the undulation solutions, going from 10° to 2° blocksize. Further
irhprovement is expected when approaching the limit of continuous data. Finally the
recovery ability of the two data types is compared. The anomaly data, of all block sizes,
produce coefficients with error less than 1% for the low degrees, approaching a
maximum of 10% for coefficients of degree half the Nyquist frequency and reaching 40%
near degrees of the Nyquist frequency. The error definitely increases with increasing
degree. On the other hand, the undulation data recover the 2" and 3rd degree coefficients
with an error of 10% - 20%. Then the error decreases to about 5% for coefficients to
degree 10 and afterwards it continues to increase reaching 90% near the Nyquist
frequency. Specific numbers are presented and discussed in section 4.5.

As expected, the solutions require considerable computer time, even in a CRAY
supercomputer. High degree solutions for a global data set, although time consuming,
are manageable under the Toeplitz covariance matrix scheme. However, the time
requirements increase rapidly when the sequential algorithm is implemented in adding
groups of data. In particular, for the experiments performed, the time required for the
estimation of the 36 degree expansion using a global data set is about 2 minutes, while the
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combination solution to degree 36 with 4 additional data groups requires about 60
minutes. Other than the required computer time, the need in storage is another limiting
factor. For example, the 90 degree expansion involves 16,200 observations and the
associated covariance matrix. There is no need for storing this matrix, unless the error
estimates are computed. In this case, the matrix can only be stored on tape by writing
parts of it at a time.

To end this discussion, several recommendations are made for future improvement.
(1) The undulation global covariance function must be studied; an improvement should
be made, which will affect the solution in a way similar to the regularization procedure,
thus improving the prediction of the low degree coefficients.
(2) For further improvement of the low degrees, a satellite-derived field should be
included. This can be done easily in including these potential coefficients as an additional
data group in the sequential algorithm, which is simplified considering that the errors of
the satellite coefficients are not correlated with the other data errors.
(3) Programming effort should be dedicated in order to take advantage of the pseudo-
Toeplitz pattern (section 3.3) in forming the cross-covariances between any two data
groups, as well as utilizing these matrices in the partitioned inversion scheme. Also, fully
vectorized software should be used to take advantage of the continually improving
supercomputer capabilities. Considering that the CRAY Y-MP/832, currently in
operation at PSC, is at least 3 times faster and has 4 times larger memory than the CRAY
X-MP/48 used in this work, combination solutions to degree 90 are feasible. Depending
on the improvement that can be achieved by implementing the suggestions made here and
on the impact that fully vectorized software will have, high degree solutions to degree 180
may be possible. However, when judging the required time of the methodology of this
study in comparison with other methods utilizing one data-type, the effort required for the
data type conversion should be considered.
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